Advertisement

Soft Computing and Image Analysis: Features, Relevance and Hybridization

  • Sankar K. Pal
  • Ashish Ghosh
  • Malay K. Kundu
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 42)

Abstract

The relevance of integrating the merits of different soft computing tools for designing efficient image processing and analysis systems is explained. The feasibility of such systems and different ways of integration, so far made, are described. Scope for further research and development is outlined. An extensive bibliography is also provided.

Keywords

Neural Network Genetic Algorithm IEEE Transaction Image Segmentation Artificial Neural Network Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh L. A. (1994) Fuzzy logic, neural networks, and soft computing. Com-munications of the ACM, 37:77–84.CrossRefGoogle Scholar
  2. 2.
    Pal S. K., Pal N. R. (1996) Soft computing : goals , tools and feasibility. Jour-nal of Institute of Electronics and Telecommunication Engineering, 42:335–347.Google Scholar
  3. 3.
    Gonzalez R. C., Woods R. E. (1993) Digital Image Processing. Addison-Wesley, Reading, MA.Google Scholar
  4. 4.
    Rosenfeld A., Kak A. C. (1992) . Digital Picture Processing. Academic Press, New York.Google Scholar
  5. 5.
    Zadeh L. A. (1965) Fuzzy sets. Information and Control, 8:338–353.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bezdek J. C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.MATHCrossRefGoogle Scholar
  7. 7.
    Pal S. K., Dutta Majumder D. (1986) Fuzzy Mathematical Approach to Pattern Recognition. John Wiley (Halsted Press), New York.MATHGoogle Scholar
  8. 8.
    Kandel A. (1986) Fuzzy Mathematical Techniques with Applications. Addison-Wesley, Reading, MA.MATHGoogle Scholar
  9. 9.
    Bezdek J. C., Pal S. K. (eds.) (1992) Fuzzy Models for Pattern Recognition : Methods that Search for Structures in Data. IEEE Press, New York.Google Scholar
  10. 10.
    Klir G. J., Yuan B. (1995) Fuzzy Sets and Fuzzy Logic — Theory and Appli-cations. Prentice Hall, New York.Google Scholar
  11. 11.
    Yager R. R., Zadeh L. A. (eds.). (1992) An introduction to fuzzy logic appli-cations in intelligent systems. Kluwer Academic Press, Boston.Google Scholar
  12. 12.
    Rumelhart D. E., McClelland J., et al. (1986) Parallel Distributed Processing : Explorations in the Microstructure of Cognition, volume 1. MIT Press, Cambridge, MA.Google Scholar
  13. 13.
    Kohonen T. (1989) Self-organization and Associative Memory. Springer Ver-lag, Berlin.CrossRefGoogle Scholar
  14. 14.
    Pao Y. H. (1989) Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, New York.MATHGoogle Scholar
  15. 15.
    Chua L. O., Yang L. (1988) Cellular neural network : theory. IEEE Transac-tions on Circuits and Systems, 35:1257–1272.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Jain A. K., Mao J., Mohiuddin K. M. (1996) Artifical neural networks : a tutorial. IEEE Computer, 31–44.Google Scholar
  17. 17.
    Haykin S. (1994) Neural Networks : A Comprehensive Foundation. Macmillan College Publishing Co., New York.MATHGoogle Scholar
  18. 18.
    Goldberg D. E. (1989) Genetic Algorithms : Search, Optimization and Ma-chine Learning. Addison-Wesley, New York.Google Scholar
  19. 19.
    Davis L. (ed.) (1991) Handbook of Genetic Algorithms. Van Nostrand Rein-hold, New York.Google Scholar
  20. 20.
    Mitchell M. (1996) An Introduction to Genetic Algorithms. The MIT Press, MA.Google Scholar
  21. 21.
    Pal S. K., Wang P. P. (eds.) (1996) Genetic Algorithms for Pattern Recogni-tion. CRC Press, Boca-raton.Google Scholar
  22. 22.
    Prewitt J. M. S. (1970) Object enhancement and extraction. In B. S. Lipkin and A. Rosenfeld, editors, Picture Processing and Psycho-Pictorics. Academic Press, New York.Google Scholar
  23. 23.
    Rosenfeld A. (1984) Fuzzy geometry of image subsets. Pattern Recognition Letters, 2:311–317.CrossRefGoogle Scholar
  24. 24.
    Kaufmann A. (1980) Fuzzy Subsets — Fundamental Theoretical Elements. Academic Press, New York.Google Scholar
  25. 25.
    Xie W. X., Bedrosian S. D. (1984) An information measure for fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics, 14:151–156.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kosko B. (1986) Fuzzy entropy and conditioning. Information Sciences, 40:165–174.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Pal N. R., Pal S. K. (1989) Object background segmentation using a new definition of entropy. IEE Proceedings, Part E, 284–295.Google Scholar
  28. 28.
    Pal S. K., Rosenfeld A. (1991) A fuzzy medial axis transformation based on fuzzy disk. Pattern Recognition Letters, 12:585–590.CrossRefGoogle Scholar
  29. 29.
    Pal S. K., Rosenfeld A. (1989) Image enhancement and thresholding by opti-mization of fuzzy compactness. Pattern Recognition Letters, 7:77–86.CrossRefGoogle Scholar
  30. 30.
    Pal S. K., Ghosh A. (1992) Fuzzy geometry in image analysis. Fuzzy Sets and Systems, 48:23–40.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pal S. K., Ghosh A. (1990) Index of area coverage of fuzzy image subsets and object extraction. Pattern Recognition Letters, 12:831–841.CrossRefGoogle Scholar
  32. 32.
    Rosenfeld A., Klette R. (1985) Degree of adjacency or surroundedness. Pattern Recognition, 18:169–177.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Dubois D., Jaulent M. C. (1987) A generalized approach to parameter evaluation in fuzzy digital pictures. Pattern Recognition Letters, 6:251–259.MATHCrossRefGoogle Scholar
  34. 34.
    Rosenfeld A. (1998) Fuzzy geometry : an updated overview. Information Science, 110:127–133.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pal S. K., King R. A., Hashim A. A. (1983) Automatic gray level thresholding through index of fuzziness. Pattern Recognition Letters, 1:141–146.CrossRefGoogle Scholar
  36. 36.
    Keller J. M., Carpenter C. L. (1990) Image segmentation in the presence of uncertainty. International Journal of Intelligent Systems, 5:193–208.MATHCrossRefGoogle Scholar
  37. 37.
    Pal S. K., Ghosh A. (1992) Image segmentation using fuzzy correlation. Information Sciences, 62:223–250.MATHCrossRefGoogle Scholar
  38. 38.
    Huntsberger T. L., Jacobs C. L., Cannon R. L. (1985) Iterative fuzzy image segmentation. Pattern Recognition, 18:131–138.CrossRefGoogle Scholar
  39. 39.
    Trivedi M., Bezdek J. C. (1986) Low-level segmentation of aerial images with fuzzy clustering. IEEE Transactions on Systems, Man, and Cybernetics, 16:589–598.CrossRefGoogle Scholar
  40. 40.
    Pal S. K. (1982) Image enhancement using smoothing with fuzzy sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4:204–208.MATHCrossRefGoogle Scholar
  41. 41.
    Kundu M. K., Pal S. K. (1990) Automatic selection of object enhancement operator with quantitative justification based on fuzzy set theoretic measure. Pattern Recognition Letters, 11:811–829.MATHCrossRefGoogle Scholar
  42. 42.
    Pal S. K. (1990) Fuzzy skeletonization of images. Pattern Recognition Letters, 10:17–23.CrossRefGoogle Scholar
  43. 43.
    Goetcherian V. (1980) From binary to gray tone image processing using fuzzy logic concepts. Pattern Recognition, 12:7–15.CrossRefGoogle Scholar
  44. 44.
    Pal S. K., King R. A. (1983) On edge detection of X-ray images using fuzzy sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5:69–77.CrossRefGoogle Scholar
  45. 45.
    Pal S. K., King R. A., Hashim A. A. (1983) Image description and primi-tive extraction using fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics, 13:94–100.CrossRefGoogle Scholar
  46. 46.
    Cottrel G. W., Munro P. (1988) Principal component analysis of images via back propagation. SPIE : Visual Communication and Image Processing, 1001:1070–1077.Google Scholar
  47. 47.
    Luttrell S. P. (1989) Image compression using a multilayer neural network. Pattern Recognition Letters, 10:1–7.MATHCrossRefGoogle Scholar
  48. 48.
    Dony R. D., Haykin S. (1995) Neural network approaches to image compres-sion. Proc. of the IEEE, 8:288–303.CrossRefGoogle Scholar
  49. 49.
    Chen C. T., Tsao E. C., Lin W. C. (1991) Medical image segmentation by a constraint satisfaction neural network. IEEE Transactions on Nuclear Science, 38:678–686.CrossRefGoogle Scholar
  50. 50.
    Manjunath B. S., Simchony T., Chellappa R. (1990) Stochastic and deter-ministic networks for texture segmentation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38:1039–1049.CrossRefGoogle Scholar
  51. 51.
    Silverman R. H. (1991) Segmentation of ultrasonic images with neural net-works. International Journal of Pattern Recognition and Artificial Intelligence, 5:619–628.CrossRefGoogle Scholar
  52. 52.
    Ghosh A., Pal N. R., Pal S. K. (1991) Image segmentation using a neural network. Biological Cybernetics, 66:151–158.MATHCrossRefGoogle Scholar
  53. 53.
    Ghosh A., Pal S. K. (1992) Neural network, self-organization and object extraction. Pattern Recognition Letters, 13:387–397.CrossRefGoogle Scholar
  54. 54.
    Ghosh A., Pal N. R., Pal S. K. (1992) Object background classification using Hopfield type neural network. International Journal of Pattern Recognition and Artificial Intelligence. 6:989–1008.CrossRefGoogle Scholar
  55. 55.
    Ghosh A., Pal N. R., Pal S. K. (1993) Self-organization for object extraction using multilayer neural network and fuzziness measures. IEEE Transactions on Fuzzy Systems, 1:54–68.CrossRefGoogle Scholar
  56. 56.
    Ghosh A., Pal N. R., Pal S. K. (1995) Modeling of component failure in neural networks for robustness evaluation: An application to object extraction. IEEE Transactions on Neural Networks, 6:648–656.CrossRefGoogle Scholar
  57. 57.
    Ghosh A. (1995) Use of fuzziness measures in layered networks for object extraction : a generalization. Fuzzy Sets and Systems, 72:331–348.CrossRefGoogle Scholar
  58. 58.
    Blanz W. E., Gish S. L. (1991) A real time image segmentation system using a connectionist classifier architecture. International Journal of Pattern Recognition and Artificial Intelligence, 5:603–617.CrossRefGoogle Scholar
  59. 59.
    Yu S. S., Tsai W. H. (1992) Relaxation by Hopfield neural network. Pattern Recognition, 25:197–209.CrossRefGoogle Scholar
  60. 60.
    Babaguchi N., Yamada K., Kise K., Tezuku Y. (1991) Connectionist model binarization. International Journal of Pattern Recognition and Artificial Intelligence, 5:629–644.CrossRefGoogle Scholar
  61. 61.
    Widro B., Winter R. (1988) Neural nets for adaptive filtering and adaptive pattern recognition. IEEE Computer, 25–39.Google Scholar
  62. 62.
    Basak J., Chanda B., Dutta Majumder D. (1994) On edge and line linking in graylevel images with connectionist models. IEEE Transactions on Systems, Man, and Cybernetics, 24:413–428.CrossRefGoogle Scholar
  63. 63.
    Zhou Y. T. et al. (1988) Image restoration using a neural network. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36:940–943.CrossRefGoogle Scholar
  64. 64.
    Bedini L., Tonazzini A. (1990) Neural network use in maximum entropy image restoration. Image and Vision Computing, 8:108–114.CrossRefGoogle Scholar
  65. 65.
    Paik J. K., Katsaggelos A. K. (1992) Image restoration using a modified Hopfield network. IEEE Transactions on Image Processing, 1:49–63.CrossRefGoogle Scholar
  66. 66.
    Sun Y. L., Yu S. (1995) Improvement on performance of modified hopfield neural network for image restoration. IEEE Transactions on Image Processing, 5:683–692.Google Scholar
  67. 67.
    Nasrabadi N. M., Li W. (1991) Object recognition by a Hopfield neural network. IEEE Transactions on Systems, Man, and Cybernetics, 21:1523–1535.MATHCrossRefGoogle Scholar
  68. 68.
    Jamison T. A., Schalkoff R. J. (1988) Image labeling : a neural network approach. Image and Vision Computing, 6:203–213.CrossRefGoogle Scholar
  69. 69.
    Nasrabadi N. M., Choo C. Y. (1992) Hopfield network for stereo vision correspondence. IEEE Transactions on Neural Networks, 3:5–13.CrossRefGoogle Scholar
  70. 70.
    Basak J., Pal N. R., Pal S. K. (1995) A connectionist system for learning and recognition of structures : Application to handwrtitten characters. Neural Networks, 8:643–657.CrossRefGoogle Scholar
  71. 71.
    Basak J., Pal S. K. (1995) X-tron : An incremental connectionist model for category perception. IEEE Transactions on Neural Networks, 6:1091–1108.CrossRefGoogle Scholar
  72. 72.
    Kulkarni A.D. (1994) Artificial neural networks for image understanding. Van Nostrand and Reinhold, New York.MATHGoogle Scholar
  73. 73.
    Burr D. J. (1988) Experiments on neural net recognition of spoken and written text. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36:1162–1168.MATHCrossRefGoogle Scholar
  74. 74.
    Bhanu B., Lee S. (1994) Genetic Learning for Adaptive Image Segmentation. Kluwer Academic Publishers, Boston.MATHCrossRefGoogle Scholar
  75. 75.
    Pal S. K., Bhandari D., Kundu M. K. (1994) Genetic algorithms for optimal image enhancement. Pattern Recognition Letters, 15:261–271.MATHCrossRefGoogle Scholar
  76. 76.
    Pal S. K., De S., Ghosh A. (1997) Designing Hopfield type networks using genetic algorithms and its comparison with simulated annealing. International Journal of Pattern Recognition and Artificial Intelligence, 11:447–461.CrossRefGoogle Scholar
  77. 77.
    Fitzpatrick J. M, Grefenstette J. J., Van Gucht D. (1984) Image registration by genetic search. In Proc. of the IEEE Southeastern Conference, 460–464.Google Scholar
  78. 78.
    Ankerbrandt C. A., Buckles B. P., Petry F. E. (1990) Scene recognition using genetic algorithms with semantic nets. Pattern Recognition Letters, 11:285–293.CrossRefGoogle Scholar
  79. 79.
    Pal S. K., Bhandari D. (1994) Genetic algorithms with fuzzy fitness function for object extraction using cellular neural networks. Fuzzy Sets and Systems, 65:129–139.CrossRefGoogle Scholar
  80. 80.
    Srikanth R., George R., Warshi N., Prabhu D., Petry F., Buckles B. A. (1995) A variable length genetic algorithm for clustering and classification. Pattern Recognition Letters, 16:789–800.CrossRefGoogle Scholar
  81. 81.
    Mitra S. K., Murthy C. A., Kundu M. K. (1998) Technique for fractal image compression using genetic algorithms. IEEE Tr. on Image Processing, 586–593.Google Scholar
  82. 82.
    Bala J., Wechsler H. (1993) Shape analysis using genetic algorithms. Pattern Recognition Letters, 14:967–973.CrossRefGoogle Scholar
  83. 83.
    DiIanne M., Dickmann D., Luling R. (1996) Simulated annealing and genetic algorithms for shape detection. Control and Cybernetics, 25:159–175.Google Scholar
  84. 84.
    Ozcam E., Mohan C. K. (1997) Partial shape matching using genetic algorithms. Pattern Recognition Letters, 18:987–992.CrossRefGoogle Scholar
  85. 85.
    Pal S. K., Ghosh A. (1996) Neuro-fuzzy computing for image processing and pattern recognition. International Journal of Systems Science, 27:1179–1193.MATHCrossRefGoogle Scholar
  86. 86.
    Pal S. K., Mitra S. (1992) Multilayer perceptron, fuzzy sets and classification. IEEE Transactions on Neural Networks, 3:683–697.CrossRefGoogle Scholar
  87. 87.
    Pal S. K., Mitra S. (1999) Neuro-Fuzzy Pattern Recognition : Methodologies in Soft Computing Paradigm. John Wiley, New York. 1999 (to appear).Google Scholar
  88. 88.
    Mitra S., Pal S. K. (1994) Self-organizing neural network as a fuzzy classifier. IEEE Tr. Syst., Man and Cyberns., 24:385–399.CrossRefGoogle Scholar
  89. 89.
    Kammerer B. R. (1992) Incorporating uncertainty in neural networks. International Journal of Pattern Recognition and Artificial Intelligence, 6:179–192.CrossRefGoogle Scholar
  90. 90.
    Huntsberger T. L., Ajjimerangsee P. (1990) Parallel self-organizing feature maps for unsupervised pattern recognition. International Journal of General Systems, 16:357–372.CrossRefGoogle Scholar
  91. 91.
    Newton S. C., Pemmaraju S., Mitra S. (1992) Adaptive fuzzy leader clustering of complex data sets in pattern recognition. IEEE Transactions on Neural Networks, 3:974–800.CrossRefGoogle Scholar
  92. 92.
    Whitley D., Starkweather T., Bogart C. (1990) Genetic algorithms and neu-ral networks : Optimizing connections and connectivity. Parallel Computing, 14:347–361.CrossRefGoogle Scholar
  93. 93.
    Schaffer J. D., Caruana R. A., Eshelman L. J. (1990) Using genetic search to exploit the emergent behavior of neural networks. Physica D, 42:244–248.CrossRefGoogle Scholar
  94. 94.
    Pal S. K., Bhandari D. (1994) Selection of optimum set of weights in a layered network using genetic algorithms. Information Sciences, 80:213–234.CrossRefGoogle Scholar
  95. 95.
    Maniezzo V. (1994) Genetic evolution of the topology and weight distribution of neural networks. IEEE Transactions on Neural Networks, 5:39–53.CrossRefGoogle Scholar
  96. 96.
    Saha S., Christensen J. P. (1994) Genetic design of sparse feedforward neural networks. Information Sciences, 79:191–200.MATHCrossRefGoogle Scholar
  97. 97.
    Harp S. A., Samad T. (1991) Genetic synthesis of neural network architecture. In L. Davis, editor, Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.Google Scholar
  98. 98.
    Russo M. (1998) FuGeNeSys — a fuzzy genetic neural system for fuzzy modeling. IEEE Transactions on Fuzzy Systems, 6:373–388.CrossRefGoogle Scholar
  99. 99.
    Pal S. K., Skowron A. (Eds.). (1999) Rough Fuzzy Hybridization : A New Trend in Decision Making. Springer Verlag, Singapore.MATHGoogle Scholar
  100. 100.
    Banerjee M., Mitra S., Pal S. K. (1998) Rough fuzzy mlp : Knowledge encoding and classification. IEEE Transactions on Neural Networks, 9:1203–1216.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sankar K. Pal
    • 1
  • Ashish Ghosh
    • 1
  • Malay K. Kundu
    • 1
  1. 1.Machine Intelligence UnitCalcuttaIndia

Personalised recommendations