Quantum Neural Networks

  • Alexandr A. Ezhov
  • Dan Ventura
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 45)


This chapter outlines the research, development and perspectives of quantum neural networks - a burgeoning new field which integrates classical neurocomputing with quantum computation [1]. It is argued that the study of quantum neural networks may give us both new understanding of brain function as well as unprecedented possibilities in creating new systems for information processing, including solving classically intractable problems, associative memory with exponential capacity and possibly overcoming the limitations posed by the Church-Turing thesis.


Quantum neural networks associative memory entanglement many universes interpretation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feynman, R. (1986) Quantum mechanical computers. Foundations of Physics, vol. 16, pp.507–531.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Penrose, R. (1994) Shadows of the Mind. A search for the missing science of consciousness. Oxford University Press, New York, Oxford.Google Scholar
  3. 3.
    Hameroff, S. and Rasmussen, S. (1990) Microtubule Automata: Sub-Neural Information Processing in Biological Neural Networks. In: Theoretical Aspects of Neurocomputing, M. Novak and E. Pelikan (Eds.), World Scientific, Singapore, pp.3–12.Google Scholar
  4. 4.
    Brooks, M. (Ed.) (1999) Quantum computing and communications, Springer-Verlag, Berlin/Heidelberg.zbMATHCrossRefGoogle Scholar
  5. 5.
    Deutsch, D. (1985) Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society of London, A400, pp.97–117.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Everett, H. (1957) “Relative state” formulation of quantum mechanics. Review of modern physics, vol.29, pp.454–462.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dirac, P.A.M. (1958) The principles of quantum mechanics. Oxford, Claredon Press.zbMATHGoogle Scholar
  8. 8.
    Domany, E., van Hemmen, J.L., and Schulten, K. (Eds.) (1992) Models of neural networks, Springer-Verlag. Berlin, Heidelberg, New York.zbMATHGoogle Scholar
  9. 9.
    Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences USA, vol.79, pp.2554–2558.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feynman, R.P., Leighton, R.B., and Sands, M. (1965) The Feynman Lectures on Physics, vol. 3, Addison-Wesley Publishing Company, Massachusetts.Google Scholar
  11. 11.
    Vedral, V., Plenio, M.B., Rippin, M.A., and Knight, P.L. (1997) Quantifying Entanglement. Physical Review Letters, vol. 78 no. 12, pp. 2275–2279.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jozsa, R. (1997) Entanglement and Quantum Computation. Geometric Issues in the Foundations of Science, S. Hugget, L. Mason, K.P. Tod, T. Tsou and N.M.J. Woodhouse (Eds.), Oxford University Press.Google Scholar
  13. 13.
    Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New-York.zbMATHGoogle Scholar
  14. 14.
    Perus, M. (1996) Neuro-Quantum parallelism in brain-mind and computers, Informatica, vol. 20, pp.173–183.Google Scholar
  15. 15.
    Haken, H. (1991) Synergetic computers for pattern recognition, and their control by attention parameter. In Neurocomputers and Attention II: connectionism and neurocomputers, V.I. Kryukov and A. Holden (Eds.), Manchester University Press, UK, pp 551–556.Google Scholar
  16. 16.
    Behrman, E.C., Niemel, J., Steck, J.E., and Skinner, S.R. (1996) A quantum dot neural network. Proceedings of the 4th Workshop on Physics of Computation, Boston, pp.22–24, November.Google Scholar
  17. 17.
    Behrman, E.C., Steck, J.E., and Skinner, S.R. (1999) A spatial quantum neural computer., Proceedings of the International Joint Conference on Neural Networks, to appear.Google Scholar
  18. 18.
    Goertzel, B. Quantum Neural Networks, http://goertzel/org/ben/quantnet.htmlGoogle Scholar
  19. 19.
    Chrisley, R.L. (1995) Quantum learning. In Pylkkänen, P., and Pylkkö, P. (Eds.) New directions in cognitive science: Proceedings of the international symposium, Saariselka, 4–9 August, Lapland, Finland, pp.77–89, Helsinki, Finnish Association of Artificial IntelligenceGoogle Scholar
  20. 20.
    Chrisley, R.L. (1997) Learning in Non-superpositional Quantum Neurocomputers, In Pylkkänen, P., and Pylkkö, P. (Eds.) Brain, Mind and Physics. IOS Press, Amsterdam, pp 126–139.Google Scholar
  21. 21.
    Deutsch, D. (1997) The fabric of reality. Alen Lane: The Pengu in Press.Google Scholar
  22. 22.
    Bishop, C.H. (1995) Neural networks for pattern recognition, Clarendon Press, Oxford.Google Scholar
  23. 23.
    Cotrell, G.W., Munro, P., and Zipser D. (1985) “Learning internal representation from gray-scale images: An example of extensional programming”, Proceedings of the Ninth Annual Conference of the Cognitive Science Society, Irvine, CS.Google Scholar
  24. 24.
    Gasquel, J.-D., Moobed, B., and Weinfeld, M. (1994) “An internal mechanism for detecting parasite attractors in a Hopfield network”, Neural Computation, vol.6, pp.902–915.CrossRefGoogle Scholar
  25. 25.
    Schwenk, H., and Milgram, M. (1994) Structured diabolo-networks for hand-written character recognition. International Conference on Artificial Neural Networks, 2, Sorrento, Italy, pp.985–988.Google Scholar
  26. 26.
    Ezhov, A.A., and Vvedensky, V.L. (1996) Object generation with neural networks (when spurious memories are useful), Neural Networks, vol. 9, pp. 1491–1495.zbMATHCrossRefGoogle Scholar
  27. 27.
    Müller, B., Reinhardt, J., and Strickland, M.T. (1995) Neural Networks, Springer-Verlag, Berlin, Heidelberg.zbMATHCrossRefGoogle Scholar
  28. 28.
    Ezhov, A.A., Kalambet, Yu.A., and Knizhnikova, L.A. (1990) “Neural networks: general properties and particular applications”. In: Neural Networks: Theory and Architectures. V.I. Kryukov and A. Holden (Eds.) , Manchester University Press, Manchester, UK, pp.39–47.Google Scholar
  29. 29.
    Ventura, D. and Martinez, T. (1999) “Initializing the amplitude distribution of a quantum state”, submitted to Foundations of Physics Letters.Google Scholar
  30. 30.
    Ventura, D. and Martinez, T. (1998) Quantum associative memory with exponential capacity, Proceedings of the International Joint Conference on Neural Networks, pp.509–513.Google Scholar
  31. 31.
    Milburn, G.J. (1998) The Feynman Processor, Perseus Books, Reading MA.zbMATHGoogle Scholar
  32. 32.
    Menneer, T. and Narayanan, A. (1995) Quantum-inspired neural networks. Technical report R329, Department of Computer Science, University of Exeter, UKGoogle Scholar
  33. 33.
    Ventura, D. and Martinez, T. (1999) A quantum associative memory based on Grover’s algorithm. Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pp.22–27.Google Scholar
  34. 34.
    Ventura, D. (1998) Artificial associative memory using quantum processes. Proceedings of the International Conference on Computational Intelligence and Neuroscience, vol.2, pp.218–221.Google Scholar
  35. 35.
    Ventura, D. and Martinez, T.(1999) Quantum associative memory. Information Sciences, in press.Google Scholar
  36. 36.
    Grover, L.K. (1996) A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, pp.212–219.Google Scholar
  37. 37.
    Ezhov, A.A., Nifanova, A.V., and Ventura, D. (1999) Quantum Associative Memory with Distributed Queries, in preparation.Google Scholar
  38. 38.
    Gruska, J. (1999) Quantum computing, McGraw-Hill, UK.Google Scholar
  39. 39.
    Cutting, D.(1999) Would quantum neural networks be subject to the decidability constraints of the Church-Turing thesis? Neural Network World, N.l-2, pp.163–168Google Scholar
  40. 40.
    Gershenfeld, N.A. and Chuang, I.L. (1996) Bulk Spin Resonance Quantum Computation. Science, 257 (January 17), p.350.MathSciNetGoogle Scholar
  41. 41.
    Knill, E. , Laflamme, R., Martinez, R. and Tseng, C.-H. (1999) A Cat-State Benchmark on a Seven Bit Quantum Computer, Los Alamos pre-print archive, quant-ph/9908051Google Scholar
  42. 42.
    Shor, P.W. (1997) Polynomial-time algorithm for prime factorization and discrete lpgarithms on a quantum computer, SIAM Journal on Computing, vol.26, pp. 1484–1509.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Perus, M. (1997) Neural networks, quantum systems and consciousness. Science Tribune, Article - May. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Alexandr A. Ezhov
    • 1
  • Dan Ventura
    • 2
  1. 1.Department of MathematicsTroitsk Institute of Innovation and Fusion ResearchTroitskRussia
  2. 2.Applied Research LaboratoryThe Pennsylvania State University University ParkUSA

Personalised recommendations