Fuzzy Hypergraphs

  • John N. Mordeson
  • Premchand S. Nair
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 46)


Graph theory has found many application area in science, engineering, and mathematics. In order to expand the application base, the notion of a graph was generalized to that of a hypergraph, that is, a set X of vertices together with a collection of subsets of X. In this chapter, we fuzzify the notion of a hypergraph and state some possible applications. The results are taken from [9,10,11,12,22].


Chromatic Number Incidence Matrix Transition Level Fuzzy Subset Phase Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berge, C., Graphes et Hypergraphes, Dunod, Paris, 1972.Google Scholar
  2. 2.
    Berge, C., Hypergraphs, North Holland, Amsterdam, 1989.MATHGoogle Scholar
  3. 3.
    Bezdek, J. C., Partition structure: a tutorial, in Analysis of Fuzzy Information, vol. III, CRC press: Boca Raton, pp. 81–108, 1987.Google Scholar
  4. 4.
    Bollobas, B., Graph Theory on Introductory Course, Springer -Verlag: New York, 1979.Google Scholar
  5. 5.
    Bouchon, B. and Cohen, G., On fuzzy relations and partitions, in Advances in Fuzzy Sets, Possibility Theory and its Applications, P. P. Wang (ed.), pp. 97–105, 1983.Google Scholar
  6. 6.
    Constantin-Paton, M. and Prusky, G., The basis of “recognition” at the synaptic level, in: Price, D.L., Thoenen, H. and Aguayo, A.J., Eds., Neurodegenerative Disorders, Mechanisms and Prospects for Therapy ( Wiley, Chichester, 1991 ) 127–144.Google Scholar
  7. 7.
    Das, M., A note on fuzzy hypergraphs and their duals, unpublished (1987).Google Scholar
  8. 8.
    Dubois, D., and Prade, H., Fuzzy Sets and Systems: Theory and Applications, New York: Academic Press 1980.MATHGoogle Scholar
  9. 9.
    Goetschel, R., Jr., Introduction of fuzzy hypergraphs and Hebbian structures, Fuzzy Sets and Systems 76: 113–130, 1995.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Goetschel, R., Jr., Craine, W., Voxman, W., Fuzzy transversals of fuzzy hypergraphs, Fuzzy Sets and Systems 84: 235–254, 1996.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    R. Goetschel, Jr., Fuzzy colorings of fuzzy hypergraphs, Fuzzy Sets and Systems, 94: 185–204, 1998.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Goetschel,R. N., Jr., and Voxman, W., Intersecting fuzzy hypergraphs, Fuzzy Sets and Systems, 99: 81–96, 1998.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Graver, J. E., and Watkins, M. E., Combinatorics With Emphasis on Theory of Graphs, Springer-Verlag, Berlin, 1977.MATHCrossRefGoogle Scholar
  14. 14.
    Hebb, D.O., The Organization of Behavior ( Wiley, New York, 1949 ).Google Scholar
  15. 15.
    Ismail, M. A., Soft clustering: algorithm and validity of solutions, in Fuzzy Computing, Gupta, M. M., and Yamakawa, T.,(ed.), Elservier Science, North Holland, pp. 445–471, 1988.Google Scholar
  16. 16.
    Kaufmann, A., Introduction à la Thèorie des Sous-Ensemble Flous, vol. 1, Masson: Paris 1977.Google Scholar
  17. 17.
    Kaufmann, A., Introduction à la Thèorie des Sous-Ensemble Flous, vol. 4, Masson: Paris 1977.Google Scholar
  18. 18.
    Kuroki, N. and Mordeson, J. N., Successor and source functions, J. Fuzzy Math., 5: 173–182, 1997.MathSciNetMATHGoogle Scholar
  19. 19.
    Kuroki N. and Mordeson, J. N., Structure of rough sets and rough groups, J. Fuzzy Math., 5: 183–191, 1997.MathSciNetMATHGoogle Scholar
  20. 20.
    Lee-Kwang, H., and Favrel, J., Hierarchical reduction and decomposition method of Petri nets, IEEE Trans.Syst.Man.Cybern., vol. SMC-15, pp. 272–280, 1985.Google Scholar
  21. 21.
    Lee-Kwang, H., and Favrel, J. and Oh, G., Hierarchical decomposition of Petri net languages, IEEE Trans. Syst. Man. Cybern., vol. SMC-17, pp. 877–878, 1987.Google Scholar
  22. 22.
    Lee-Kwang, H., and Lee, K.-M., Fuzzy Hypergraph and Fuzzy Partition, IEEE Trans. Syst., Man,.and Cybern., vol. SMC -25, pp. 196201, 1995.Google Scholar
  23. 23.
    Lorente de Nó, R., Synaptic stimulation of motoneurons as a local process, J. Neurophysiol. 1: 195–206, 1938.Google Scholar
  24. 24.
    Lynch, G., Synapses, Circuits, and the Beginnings of Memory, MIT Press, Cambridge, MA, 1986.Google Scholar
  25. 25.
    Mordeson, J. N., Rough set theory applied to (fuzzy) ideal theory,Fuzzy Sets and Systems, to appear.Google Scholar
  26. 26.
    Mordeson, J. N., Algebraic properties of spaces in rough fuzzy set theory, NAFIPS’99, 56–59, 1999.Google Scholar
  27. 27.
    Morsi, N. N. and Yakout, M. N., Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems, 100: 327–342, 1998.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Orlawska, E., Semantic analysis of inductive reasoning, Theoretical Computer Science, 43: 81–89, 1986.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Papadimitrion, C. H.and Steiglitz, K., Combinatorial Optimization: Algorithms and Complexity, Prentice Hall: Englewood Cliffs, 1982.Google Scholar
  30. 30.
    Pawlak, Z., Rough sets, Int. J. Comp. Sci., 11: 312–356, 1982.MathSciNetGoogle Scholar
  31. 31.
    Pawlak, Z., Rough Sets, Theoretical Aspects About Data, Kluwer Acad. Pub., 1991.MATHCrossRefGoogle Scholar
  32. 32.
    Pedrycz, W. and Hirota, K., An application of probabilistic sets to fuzzy clustering, in Analysis to Fuzzy Information, vol. III, CRC Press: Boca Raton, pp. 170–181, 1987.Google Scholar
  33. 33.
    Pomykala, J. A., Approximation operations in approximate space, Bulletin of the Polish Academy of Sciences: Mathematics, 35: 653–662, 1987.MathSciNetMATHGoogle Scholar
  34. 34.
    Wasilewska, A., Conditional knowledge representation systems–model for an implementation, Bulletin of the Polish Academy of Sciences: Mathematics, 37: 63–69, 1987.MathSciNetGoogle Scholar
  35. 35.
    Wasilewska, A. and Vigeron, L., On generalized rough sets, preprint.Google Scholar
  36. 36.
    Wybraniec - Skardowska, U., On a generalization of approximation space, Bulletin of the Polish Academy of Sciences: Mathematics, 37:51-61, 1989.Google Scholar
  37. 37.
    Yao, Y. Y., Relational interpretations of neighborhood operators and rough set approximation operators, preprint.Google Scholar
  38. 38.
    Yao, Y. Y., Two views of the theory of rough sets in finite universes, Int. J. Approximate Reasoning, 15: 291–317, 1996.MATHCrossRefGoogle Scholar
  39. 39.
    Yao, Y. Y. and Lin, T. Y., Generalization of rough sets using modal logics, Intelligent Automation and Soft Computing, 2:103-120, 1996.Google Scholar
  40. 40.
    Zakowski, W., Approximations in the space (U, II), Demonstratio Mathematica, XVI: 761–769, 1983.MathSciNetGoogle Scholar
  41. 41.
    Zimmermann, H.-J., Fuzzy Set Theory and its Applications, Nijhoff Publishing, Dordrecht, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • John N. Mordeson
    • 1
  • Premchand S. Nair
    • 2
  1. 1.Center for Research in Fuzzy Mathematics and Computer ScienceOmahaUSA
  2. 2.Department of Mathematics and Computer ScienceCreighton UniversityOmahaUSA

Personalised recommendations