Advertisement

Neuro-fuzzy systems

  • Ernest Czogała
  • Jacek Łęski
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 47)

Abstract

There are generally three approaches to building mathematical models:
  • white box modeling, where everything is considered to be known from physical laws,

  • black box modeling (system identification), where all knowledge derives from measurements,

  • gray box modeling, where both physical laws and observed measurements are used to design a model.

Keywords

Artificial Neural Network Membership Function Fuzzy System Fuzzy Rule Fuzzy Inference System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  1. Jang, J.-S.R., Sun, C.-T., Mizutani, E. (1997): Neuro-fuzzy and soft computing. A computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  2. Wang, L.-X. (1998): A course in fuzzy systems and control. Prentice-Hall, New YorkGoogle Scholar
  3. Kosko, B. (1997): Fuzzy engineering. Prentice-Hall, Upper Saddle RiverMATHGoogle Scholar
  4. Rao, A.V., Miller, D., Rose, K., Gersho, A. (1997): Mixture of experts regression modeling by deterministic annealing. IEEE Trans. Signal Processing 45 (11), 2811–2819CrossRefGoogle Scholar
  5. Vergara, V., Moraga, C. (1997): Optimization of fuzzy models by global numeric optimization. In: Hellendoorn, H., Driankov, D. (eds.): Fuzzy model identification. Selected approaches. Springer, New YorkGoogle Scholar
  6. Cordòn, O., Herrera, F. (1997): Identification of linguistic fuzzy models by means of genetic algorithms. In: Hellendoorn, H., Driankov, D. (eds.): Fuzzy model identification. Selected approaches, Springer. New YorkGoogle Scholar
  7. Baldi, P., Brunak, S. (1998): Bioinformatics. The machine learning approach. The MIT Press, CambridgeGoogle Scholar
  8. Yen, J., Wang, L. (1998): Application of statistical information criteria for optimal fuzzy model construction. IEEE Trans. Fuzzy Systems 6 (3), 362–371CrossRefGoogle Scholar
  9. Shi. Y., Eberhart, R., Chen, Y. (1999): Implementation of evolutionary fuzzy systems. IEEE Trans. Fuzzy Systems 7 (2), 109–119CrossRefGoogle Scholar
  10. Babuska, R., Verbruggen, H.B. (1997): Constructing fuzzy models by product space clustering. In: Hellendoorn, H., Driankov, D. (eds.): Fuzzy model identification. Selected approaches. Springer, New YorkGoogle Scholar
  11. Babuska, R., Verbruggen, H.B. (1997): Constructing fuzzy models by product space clustering. In: Hellendoorn, H., Driankov, D. (eds.): Fuzzy model identification. Selected approaches. Springer, New YorkGoogle Scholar
  12. Hollatz, J. (1997): Fuzzy identification using methods of intelligent data analysis. In: HellendoornGoogle Scholar
  13. Jang, J.-S.R. (1994): Structure determination in fuzzy modeling: a fuzzy CART approach.Proceedings of the Third IEEE International Conference on Fuzzy Systems, IEEE PressGoogle Scholar
  14. Jang, J.-S.R. (1996): Input selection for ANFIS learning. Proceedings on the Fifth IEEE International Conference on Fuzzy Systems, IEEE Press, 1493–1499Google Scholar
  15. Nakoula, Y., Galichet, S., Foulloy, L. (1997): Identification of linguistic fuzzy models based on learning. In: Hellendoorn, H., Driankov, D. (eds.): Fuzzy model identification. Selected approaches. Springer, New YorkGoogle Scholar
  16. Park, M.-K., Ji, S.-H., Kim, E.-T., Park, M. (1997): Identification of Takagi-Sugeno fuzzy models via clustering and Hough transform. In: Hellendoorn, H., Driankov, D. (eds.): Fuzzy model identification. Selected approaches. Springer, New YorkGoogle Scholar
  17. Runkler, T.A., Bezdek, J.C. (1999): Function approximation with polynomial membership functions and alternating cluster estimation. Fuzzy Sets and Systems 101, 207–218MathSciNetMATHCrossRefGoogle Scholar
  18. Su, M.-C. (1997): Identification of singleton fuzzy models via fuzzy hyperrectangular composite Neural Network. In: Hellendoorn, H., Driankov, D. (eds.): Fuzzy model identification. Selected approaches. Springer, New YorkGoogle Scholar
  19. Yen, J., Wang, L. (1998): Application of statistical information criteria for optimal fuzzy model construction. IEEE Trans. Fuzzy Systems 6 (3), 362–371CrossRefGoogle Scholar
  20. Zhang, Q. (1998): Single side scaling wavelet frame and neural network. In: Akay, M. (ed.): Time frequency and wavelets in biomedical signal processing IEEE Press, New YorkGoogle Scholar
  21. Kobayashi, K. (1998): Self-organizing wavelet-based neural network. In: Akay, M. (ed.): Time frequency and wavelets in biomedical signal processing IEEE Press, New YorkGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2000

Authors and Affiliations

  • Ernest Czogała
    • 1
  • Jacek Łęski
    • 1
  1. 1.Institute of ElectronicsSilesian University of TechnologyGliwicePoland

Personalised recommendations