Skip to main content

Unsupervised learning Clustering methods

  • Chapter
Fuzzy and Neuro-Fuzzy Intelligent Systems

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 47))

  • 512 Accesses

Abstract

In the learning method described in the previous chapter we assume that we have target (desired) output of network for inputs from training data set. In contrast to that, in this chapter we use data set without the desired output of network. Such an approach to network learning without a teacher or supervisor is called an unsupervised method. The effect of that learning are features, regularities and structure of data extraction, and sometimes it is called a method that search for structures of data. For example in biology and medicine, where sets of physical and biochemical measurements define species and diseases, respectively, unsupervised methods are very useful. In this book unsupervised methods will be used to search fuzzy if-then rules. Grouping found by unsupervised methods is frequently referred to as clusters. The cluster is a natural and homogeneous subset of data. The data in each cluster are as similar as possible to each other, and as different (dissimilar) as possible from other cluster’s data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  • Duda, R.O., Hart, P.E. (1973): Pattern classification and scene analysis. John Wiley and Sons, New York

    MATH  Google Scholar 

  • Fukunaga, K. (1990): Introduction to statistical pattern recognition. 2nd edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Ripley, B.D. (1996): Pattern recognition and neural network. Cambridge University Press, Cambridge New York Melbourne

    Google Scholar 

  • Tou, J.T., Gonzalez, R.C. (1974): Pattern recognition principles. Adison-Wesley, London

    MATH  Google Scholar 

  • Bezdek, J.C., Pal, S.K. (eds.) (1992): Fuzzy models for pattern recognition. Methods that search for structures in data. IEEE Press, New York

    Google Scholar 

  • Bezdek, J.C. (1982): Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York London

    Google Scholar 

  • Bezdek, J.C., Hathaway, R.J., Sabin, M.J., Tucker, W.T. (1987): Convergence theory for fuzzy c-means: counterexamples and repairs. IEEE Trans. System, Man and Cybernetics 17 (5), 873–877

    MATH  Google Scholar 

  • Davé, R.N., Krishnapuram, R. (1997): Robust clustering methods: a unified view. IEEE Trans. Fuzzy Systems 5 (2), 270–293

    Article  Google Scholar 

  • Karayiannis, N.B., Bezdek, J.C., Pal, N.R., Hathaway, R.J., Pai, P.-I. (1996): Repairs to GLVQ: a new family of competitive learning schemes. IEEE Trans. Neural Networks 7 (5), 1062–1071

    Article  Google Scholar 

  • Karayiannis, N.B., Pai, P.-I. (1996): Fuzzy algorithms for learning vector quantization. IEEE Trans. Neural Networks 7 (5), 1196–1211

    Article  Google Scholar 

  • Karayiannis, N.B., Bezdek, J.C. (1997): An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering. IEEE Trans. Fuzzy Systems 5(4),’622–628

    Google Scholar 

  • Krishnapuram, R., Kim, J. (1996): A clustering algorithm based on minimum volume, Proceedings of the Fifth IEEE International Conference on Fuzzy System, IEEE Press, 1387–1392

    Google Scholar 

  • Sato, M., Sato, Y., Jain, L.C. (1997): Fuzzy clustering models and applications. Springer, New York Scales, L.E. ( 1985 ): Introduction to nonlinear optimization. Macmillan, London

    Google Scholar 

  • Bezdek, J.C., Harris, J.D. (1978): Fuzzy partitions and relations; An axiomatic basis for clustering. Fuzzy Sets and Systems 1, 111–127

    Google Scholar 

  • Chen, C.H. (ed.) (1996): Fuzzy logic and neural network handbook. McGraw-Hill, Inc., New York

    Google Scholar 

  • Pedrycz, W. (1998): Conditional fuzzy clustering in the design of radial basis function neural network. IEEE Trans. Neural Networks 9 (4), 601–612

    Article  Google Scholar 

  • Imai, H., Tanaka, A., Miyakoshi, M. (1998): A method of identifying influential data in fuzzy clustering. IEEE Trans. Fuzzy Systems 6 (1), 90–101

    Article  Google Scholar 

  • Rose, K., Gurewitz, E., Fox, G.C. (1992): Vector quantization by deterministic annealing IEEE Trans. Information Theory 38 (4), 1249–1257

    Article  MATH  Google Scholar 

  • Rose, K., Gurewitz, E., Fox, G.C. (1993): Constrained clustering as an optimization method. IEEE Trans. Pattern Analysis and Machine Intelligence 15 (8), 785–794

    Article  Google Scholar 

  • Windham, M.P. (1982): Cluster validity for the fuzzy c-means clustering algotithm. IEEE Trans. Pattern Analysis and Machine Intelligence 4 (4), 357–363

    Article  Google Scholar 

  • Tsao, E.C.-K., Bezdek, J.C., Pal, N.R. (1994): Fuzzy Kohonen clustering networks. Pattern Recognition 27 (5), 757–764

    Article  Google Scholar 

  • Pal, N.R., Bezdek, J.C. (1995): On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Systems 3 (3), 370–379

    Article  Google Scholar 

  • Rhee, H.-S., Oh, K.-W. (1996): A validity measure for fuzzy clustering and its use in selecting optimal number of clusters. Proceedings of the Fifth IEEE International Conference on Fuzzy System, IEEE Press, 1020–1025

    Google Scholar 

  • Flores-Sintas, A., Cadenas, J.M., Martin, F. (1998): A local geometrical properties application to fuzzy clustering. Fuzzy Sets and Systems 100, 245–256

    Article  MathSciNet  Google Scholar 

  • Flores-Sintas, A., Cadenas, J.M., Martin, F. (1999): Membership functions in the fuzzy C-means algorithm. Fuzzy Sets and Systems 101, 49–58

    Article  Google Scholar 

  • Bajcsy, P., Ahuja, N. (1998): Location-and density-based hierarchical clustering using similarity analysis. IEEE Trans. Pattern Analysis and Machine Intelligence 20 (9), 1011–1015

    Article  Google Scholar 

  • Beni, G., Liu, X. (1994): A least biased fuzzy clustering method. IEEE Trans. Pattern Analysis and Machine Intelligence 16 (9), 954–960

    Article  Google Scholar 

  • Cheng, T.W.C., Goldgof, D.B., Hall, L.O. (1998): Fast fuzzy clustering. Fuzzy Sets and Systems 93, 49–56

    Article  MATH  Google Scholar 

  • El-Sonbaty, Y., Ismail, M.A. (1998): Fuzzy clustering for symbolic data. IEEE Trans. Fuzzy Systems 6 (2), 195–204

    Article  Google Scholar 

  • Eltoft, T., deFigueiredo, R.J.P. (1998): A new neural network for cluster-detection-and-labeling. IEEE Trans. Neural Networks 9 (5), 1021–1035

    Article  Google Scholar 

  • Gath, I., Geva, A.B. (1989): Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Analysis and Machine Intelligence 11 (7), 773–781

    Article  Google Scholar 

  • Li, R.-P., Mukaidono, M. (1999): Gaussian clustering method based on maximum-fuzzy-entropy interpretation. Fuzzy Sets and Systems 102, 253–258

    Article  MathSciNet  MATH  Google Scholar 

  • Windham, M.P. (1983): Geometrical fuzzy clustering algorithms. Fuzzy Sets and Systems 10, 27 1279

    Google Scholar 

  • Mitra, S., Pal, S.K. (1996): Fuzzy self-organization, inferencing and rule generation. IEEE Trans. System, Man and Cybernetics 26 (5), 608–619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Czogała, E., Łęski, J. (2000). Unsupervised learning Clustering methods. In: Fuzzy and Neuro-Fuzzy Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 47. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1853-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1853-6_4

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-00389-3

  • Online ISBN: 978-3-7908-1853-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics