Artificial neural networks

  • Ernest Czogała
  • Jacek Łęski
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 47)


Artificial neural networks are systems whose structure is inspired by the action of the nervous system and the human brain. A neuron is the basic unit of a biological neural network. This neuron is shown in Fig. 3.1.a. The neuron consists of inputs called dendrites and output (to other neurons) called axon. The transmission of a signal from an axon to dendrites of other neurons goes through synaptic contacts. The signals transmitted from the synapse to dendrites are modified according to the synaptic strength of connection (synaptic weight).


Genetic Algorithm Artificial Neural Network Simulated Annealing Learning Rule Radial Basis Function Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  1. Haykin, S. (1999): Neural networks. A comprehensive foundation. Prentice Hall Int., Upper Saddle RiverGoogle Scholar
  2. Hertz, J., Krogh, A., Palmer, R.G. (1991): Introduction to the theory of neural computing. Addison-Wesley, Redwood CityGoogle Scholar
  3. Kartalopoulos, S.V. (1996): Understanding neural networks and fuzzy logic. Basic concepts and applications IEEE Press, New YorkMATHGoogle Scholar
  4. Khanna, T. (1990): Foundations of neural network. Addison-Wesley, ReadingGoogle Scholar
  5. Maren, A.J., Harston, C.T., Pap, R.M. (1990): Handbook of neural computing applications. Academic Press, San DiegoMATHGoogle Scholar
  6. Lippmann, R.P. (1986): An introduction to computing with neural nets IEEE ASSP Mag. 4, 4–22Google Scholar
  7. Ripley, B.D. (1996): Pattern recognition and neural network. Cambridge University Press, Cambridge New York MelbourneGoogle Scholar
  8. Baldi, P., Brunak, S. (1998): Bioinformatics. The machine learning approach. The MIT Press, CambridgeGoogle Scholar
  9. Pao, Y.-H. (1989): Adaptive pattern recognition and neural networks. Addison-Wesley, New YorkMATHGoogle Scholar
  10. Takagi, H., Hayashi, I. (1991): NN-driven fuzzy reasoning. Journal Approximate Reasoning 5 (3), 191–212MATHCrossRefGoogle Scholar
  11. Zhang, Q., Benveniste, A. (1992): Wavelet networks. IEEE Trans. Neural Networks 3 (6), 889–898CrossRefGoogle Scholar
  12. Zhang, Q. (1998): Single side scaling wavelet frame and neural network. In: Akay, M. (ed.): Time frequency and wavelets in biomedical signal processing IEEE Press, New YorkGoogle Scholar
  13. Buckley, J.J., Hayashi, Y., Czogala, E. (1993): On the equivalence of neural nets and fuzzy expert systems, Fuzzy Sets and Systems 53, 129–134MathSciNetMATHCrossRefGoogle Scholar
  14. Keller, J.M., Tahani, H. (1992): Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks. Journal Approximate Reasoning 6, 221–240MATHCrossRefGoogle Scholar
  15. Rudin, W. (1976): Principles of mathematical analysis. McGraw-Hill, New YorkMATHGoogle Scholar
  16. Gill, P., Murray, W., Wright, M. (1981): Practical optimization. Academic Press, New YorkMATHGoogle Scholar
  17. Scales, L.E. (1985): Introduction to nonlinear optimization. Macmillan, LondonGoogle Scholar
  18. Deutsch, R. (1965): Estimation theory. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  19. Larminat, P., Thomas, Y. (1977): Automatique des systemes lineaires. Flammarion Sciences, ParisGoogle Scholar
  20. Elbert, T.F. (1984): Estimation and control of systems. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  21. Söderström, T., Stoica, P. (1994): System identification. Prentice-Hall, New YorkGoogle Scholar
  22. Eykhoff, P. (1974): System identification. Parameter and state estimation. John Wiley & Sons, LondonGoogle Scholar
  23. Anderson, B.D.O., Moore, J.B. (1979): Optimal filtering. Prentice-Hall, New JerseyMATHGoogle Scholar
  24. Meditch, J.S. (1969): Stochastic optimal linear estimation and control. McGraw-Hill, New YorkMATHGoogle Scholar
  25. Rose, K. (1991): Deterministic annealing, clustering and optimization. Ph.D. Thesis. California Inst. Tech., PasadenaGoogle Scholar
  26. Rose, K., Gurewitz, E., Fox, G.C. (1993): Constrained clustering as an optimization method. IEEE Trans. Pattern Analysis and Machine Intelligence 15 (8), 785–794CrossRefGoogle Scholar
  27. Rose, K. (1998): Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings IEEE 86 (11), 2210–2239CrossRefGoogle Scholar
  28. Hofmann, T., Buhmann, J.M. (1997): Pairwise data clustering by deterministic annealing IEEE Trans. Pattern Analysis and Machine Intelligence 19 (1), 1–14CrossRefGoogle Scholar
  29. Holland, J.H. (1975): Adaptation in natural and artificial systems. ANN Arbor, The University of Michigan PressGoogle Scholar
  30. Goldberg, D.E. (1989): Genetic algorithms in serch, optimization and machine learning. Addison-Wesley, New YorkGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2000

Authors and Affiliations

  • Ernest Czogała
    • 1
  • Jacek Łęski
    • 1
  1. 1.Institute of ElectronicsSilesian University of TechnologyGliwicePoland

Personalised recommendations