Advertisement

Fuzzy neural networks

  • Robert Fullér
Part of the Advances in Soft Computing book series (AINSC, volume 2)

Abstract

Hybrid systems combining fuzzy logic, neural networks, genetic algorithms, expert systems are proving their effectiveness in a wide variety of real-world problems.

Keywords

Membership Function Fuzzy Logic Fuzzy Number Fuzzy System Fuzzy Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    S. Abe, M.-S. Lan, A classifier using fuzzy rules extracted directly from numerical data, in: Proceedings of IEEE Internat. Conf. on Fuzzy Systems, San Francisco, 1993 1191–1198.Google Scholar
  2. 2.
    S. Abe, M.-S. Lan, Fuzzy rules extraction directly from numerical data for function approximation, IEEE Trans. Syst., Man,, Cybernetics, 25 (1995) 119–129.MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Abe, M.-S. Lan, A method for fuzzy rule extraction directly from numerical data, its application to pattern classification, IEEE Transactions on Fuzzy Systems, 3 (1995) 18–28.CrossRefGoogle Scholar
  4. 4.
    Constantin von Altrock, Fuzzy Logic, Neuro Fuzzy Applications Explained, ( Prentice-Hall, Englewood Cliffs, 1995 ).Google Scholar
  5. 5.
    Constantin von Altrock, Fuzzy Logic, NeuroFuzzy Applications in Business, Finance, ( Prentice-Hall, Englewood Cliffs, 1996 ).Google Scholar
  6. 6.
    F. Aminzadeh, M. Jamshidi eds., Fuzzy Sets, Neural Networks,, Distributed Artificial Intelligence ( Prentice-Hall, Englewood Cliffs, 1994 ).Google Scholar
  7. 7.
    P.E. An, S. Aslam-Mir, M. Brown,, C.J. Harris, A reinforcement learning approach to on-line optimal control, in: Proc. of IEEE International Conference on Neural Networks, Orlando, Fl, 1994 2465–2471.Google Scholar
  8. 8.
    K. Asakawa, H. Takagi, Neural Networks in Japan Communications of ACM, 37 (1994) 106–112.CrossRefGoogle Scholar
  9. 9.
    K.. Asai, M. Sugeno, T. Terano, Applied Fuzzy Systems ( Academic Press, New York, 1994 ).Google Scholar
  10. 10.
    A. Bastian, Handling the nonlinearity of a fuzzy logic controller at the transition between rules, Fuzzy Sets, Systems, 71 (1995) 369–387.CrossRefGoogle Scholar
  11. 11.
    H.R. Berenji, A reinforcement learning-based architecture for fuzzy logic control, Int. Journal Approximate Reasoning, 6 (1992) 267–292.MATHCrossRefGoogle Scholar
  12. 12.
    H.R. Berenji, P. Khedkar, Learning, tuning fuzzy logic controllers through reinforcements, IEEE Transactions on Neural Networks,3(1992) 724740.Google Scholar
  13. 13.
    H.R. Berenji, R.N. Lea, Y. Jani, P. Khedkar, A.Malkani, J. Hoblit, Space shuttle attitude control by reinforcement learning, fuzzy logic, in: Proc. IEEE Internat. Conf. on Fuzzy Systems, San Francisco, 1993 1396–1401.Google Scholar
  14. 14.
    H.R. Berenji, Fuzzy systems that can learn, in: J.M. Zurada, R.J. Marks, C.J. Robinson eds., Computational Intelligence: Imitating Life ( IEEE Press, New York, 1994 ) 23–30.Google Scholar
  15. 15.
    J.C. Bezdek, E.C. Tsao, N.K. Pal, Fuzzy Kohonen clustering networks, in: Proc. IEEE Int. Conference on Fuzzy Systems 1992, San Diego, 1992 1035–1043.Google Scholar
  16. 16.
    J.C. Bezdek, S.K. Pal eds., Fuzzy Models for Pattern Recognition ( IEEE Press, New York, 1992 ).Google Scholar
  17. 17.
    S.A. Billings, H.B. Jamaluddin,, S. Chen. Properties of neural networks with application to modelling nonlinear systems, Int. J. Control,55(1992)193224.Google Scholar
  18. 18.
    A. Blanco, M. Delgado, I. Requena, Improved fuzzy neural networks for solving relational equations, Fuzzy Sets, Systems, 72 (1995) 311–322.MathSciNetCrossRefGoogle Scholar
  19. 19.
    G Bordogna, G. Pasi, A user-adaptive neural network supporting a rule-based relevance feedback, Fuzzy Sets, Systems,(82)(1996) 201–211.Google Scholar
  20. 20.
    M. Brown, C.J. Harris, A nonlinear adaptive controller: A comparison between fuzzy logic control, neurocontrol. IMA J. Math. Control, Info., 8 (1991) 239–265.CrossRefGoogle Scholar
  21. 21.
    M. Brown, C. Harris, Neurofuzzy Adaptive Modeling, Control ( Prentice-Hall, Englewood Cliffs, 1994 ).Google Scholar
  22. 22.
    J.J. Buckley, Theory of the fuzzy controller: An introduction, Fuzzy Sets, Systems, 51 (1992) 249–258.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    J.J. Buckley, Y. Hayashi, Fuzzy neural nets, applications, Fuzzy Systems, AI, 1 (1992) 11–41.Google Scholar
  24. 24.
    J.J. Buckley, Approximations between nets, controllers, expert systems, processes, in: Proceedings of 2nd Internat. Conf. on Fuzzy Logic, Neural Networks, Iizuka, Japan, 1992 89–90.Google Scholar
  25. 25.
    J.J. Buckley, Y. Hayashi, E. Czogala, On the equivalence of neural nets, fuzzy expert systems, Fuzzy Sets, Systems, 53 (1993) 129–134.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    J.J.Buckley, Sugeno type controllers are universal controllers, Fuzzy Sets, Systems, 53 (1993) 299–304.CrossRefGoogle Scholar
  27. 27.
    J.J. Buckley, Y. Hayashi, Numerical relationships between neural networks, continuous functions,, fuzzy systems, Fuzzy Sets, Systems, 60 (1993) 1–8.MathSciNetCrossRefGoogle Scholar
  28. 28.
    J.J. Buckley, Y. Hayashi, Hybrid neural nets can be fuzzy controllers, fuzzy expert systems, Fuzzy Sets, Systems, 60 (1993) 135–142.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    J.J. Buckley, E. Czogala, Fuzzy models, fuzzy controllers, neural nets, Arch. Theoret. Appl. Comput. Sci., 5 (1993) 149–165.Google Scholar
  30. 30.
    J.J. Buckley, Y. Hayashi, Can fuzzy neural nets approximate continuous fuzzy functions? Fuzzy Sets, Systems, 61 (1993) 43–51.MathSciNetCrossRefGoogle Scholar
  31. 31.
    J.J.Buckley, Y. Hayashi, Fuzzy neural networks, in: L.A. Zadeh, R.R. Yager eds., Fuzzy Sets, Neural Networks, Soft Computing ( Van Nostrand Reinhold, New York, 1994 ) 233–249.Google Scholar
  32. 32.
    J.J.Buckley, Y. Hayashi, Fuzzy neural networks: A survey, Fuzzy Sets, Systems, 66 (1994) 1–13.CrossRefGoogle Scholar
  33. 33.
    J.J.Buckley, Y. Hayashi, Neural nets for fuzzy systems, Fuzzy Sets, Systems, 71 (1995) 265–276.CrossRefGoogle Scholar
  34. 34.
    J.J.Buckley, E. Eslami, Y. Hayashi, Solving fuzzy equations using neural nets, Fuzzy Sets, Systems, 86 (1997) 271–278.CrossRefGoogle Scholar
  35. 35.
    J.J.Buckley, E. Eslami, Neural net solutions to fuzzy problems: The quadratic equation, Fuzzy Sets, Systems, 86 (1997) 289–298CrossRefGoogle Scholar
  36. 36.
    G.A.Capenter et al, Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Transactions on Neural Networks, 3 (1992) 698–713.CrossRefGoogle Scholar
  37. 37.
    S. Chen, S.A. Billings,, P.M. Grant, Recursive hybrid algorithm for nonlinear system identification using radial basis function networks, Int. J. Control, 55 (1992) 1051–1070.MATHCrossRefGoogle Scholar
  38. 38.
    F.C. Chen, M.H. Lin, On the learning, convergence of radial basis networks, in: Proc. IEEE Int. Conf. Neural Networks,San Francisco, 1993 983988.Google Scholar
  39. 39.
    Young-Jeng Chen, Ching-Cheng Teng, Rule combination in a fuzzy neural network, Fuzzy Sets, Systems,(82)(1996) 161–166.Google Scholar
  40. 40.
    Sung-Bae Cho, Pattern recognition with neural networks combined by genetic algorithm, Fuzzy Sets, Systems, 103 (1999) 339–347.CrossRefGoogle Scholar
  41. 41.
    E. Cox, Adaptive fuzzy systems, IEEE Spectrum,, February 1993, 27–31.Google Scholar
  42. 42.
    E. Cox, The Fuzzy system Handbook. A Practitioner’s Guide to Building, Using,, Maintaining Fuzzy Systems ( Academic Press, New York, 1994 ).Google Scholar
  43. 43.
    D. Dumitrescu, Fuzzy training procedures I, Fuzzy Sets, Systems, 56 (1993) 155–169.MathSciNetCrossRefGoogle Scholar
  44. 44.
    P. Eklund, H. Virtanen, T. Riisssanen, On the fuzzy logic nature of neural nets, in: Proccedings of Neuro-Nimes, 1991 293–300.Google Scholar
  45. 45.
    P. Eklund, F. Klawonn, A Formal Framework for Fuzzy Logic Based Diagnosis, in: R.Lowen, M.Roubens eds., Proceedings of the Fourth IFSA Congress, vol. Mathematics, Brussels, 1991, 58–61.Google Scholar
  46. 46.
    P. Eklund, M. Fogström, J. Forsström, A generic neuro-fuzzy tool for developing medical decision support, in: P. Eklund ed., Proceedings of MEPP’92, International Seminar on Fuzzy Control through Neural Interpretations of Fuzzy Sets ( Abo Akademis tryckeri, Abo, 1992 ) 1–27.Google Scholar
  47. 47.
    P. Eklund, F. Klawonn,, D. Nauck, Distributing errors in neural fuzzy control. in: Proceedings of the 2nd Internat Conference on Fuzzy Logic, Neural Networks, Iizuka, Japan, 1992 1139–1142.Google Scholar
  48. 48.
    P. Eklund, F. Klawonn, Neural fuzzy logic programming, IEEE transactions on Neural Networks 3 (1992) 815–818.CrossRefGoogle Scholar
  49. 49.
    P. Eklund, Neural Logic: A Basis for Second Generation Fuzzy Controllers, in: U.Höhle, E.P.Klement eds., Proceedings of 14th Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, 1992 19–23.Google Scholar
  50. 50.
    P. Eklund, R. Fullér, A neuro-fuzzy approach to medical diagnostics, in:Proceedings of EUFIT’g3 Conference, September 7–10, 1993, Aachen, Germany ( Verlag der Augustinus Buchhandlung, Aachen, 1993 ) 810–813.Google Scholar
  51. 51.
    P. Eklund, J. Forsström, A. Holm, M.. Nyström,, G. Selén, Rule generation as an alternative to knowledge acquisition: A systems architecture for medical informatics, Fuzzy Sets, Systems, 66 (1994) 195–205.CrossRefGoogle Scholar
  52. 52.
    P. Eklund, Network size versus preprocessing, in: R.R. Yager, L.A. Zadeh eds., Fuzzy Sets, Neural Networks, Soft Computing ( Van Nostrand, New York, 1994 ) 250–264.Google Scholar
  53. 53.
    P. Eklund, A generic system for developing medical decision support, Fuzzy Systems A.I. Rep. Letters, 3 (1994) 71–78.Google Scholar
  54. 54.
    P. Eklund, J. Forsström, Computational intelligence for laboratory information systems, Scand. J. Clin. Lab. Invest., 55 Suppl. 222 (1995) 75–82.Google Scholar
  55. 55.
    A.O. Esogbue, A fuzzy adaptive controller using reinforcement learning neural networks, in: Proc. IEEE Internat. Conf. on Fuzzy Systems, San Francisco, 1993 178–183.Google Scholar
  56. 56.
    J. Forsström, P. Eklund, H. Virtanen, J. Waxlax, J. Lähdevirta, DiagaiD: A Connectionists Approach to Determine the Information Value of Clinical Data, Artificial Intelligence in Medicine, 3 (1991) 193–201.CrossRefGoogle Scholar
  57. 57.
    T. Fukuda, T. Shibata, Fuzzy-neuro-GA based intelligent robotics, in: J.M. Zurada, R.J. Marks, C.J. Robinson eds., Computational Intelligence: Imitating Life ( IEEE Press, New York, 1994 ) 352–363.Google Scholar
  58. 58.
    M. Furukawa, T. Yamakawa, The design algorithms of membership functions for a fuzzy neuron, Fuzzy Sets, Systems, 71 (1995) 329–343.CrossRefGoogle Scholar
  59. 59.
    S. Gallant, Neural Network Learning, Expert Systems, MIT Press, Cambridge, Mass., USA, 1993Google Scholar
  60. 60.
    A. Geyer-Schulz, Fuzzy rule based Expert Systems, Genetic Learning ( Physica-Verlag, Berlin, 1995 ).Google Scholar
  61. 61.
    S. Giove, M. Nordio, A. Zorat, An Adaptive Fuzzy Control for Automatic Dialysis, in: E.P. Klement, W. Slany eds., Fuzzy Logic in Artificial Intelligence, ( Springer-Verlag, Berlin 1993 ) 146–156.CrossRefGoogle Scholar
  62. 62.
    P.Y. Glorennec, Learning algorithms for neuro-fuzzy networks, in: A. Kandel, G. Langholz eds., Fuzzy Control Systems ( CRC Press, New York, 1994 ) 4–18.Google Scholar
  63. 63.
    A. Gonzalez, R. Perez, J.L. Verdegay, Learning the structure of a fuzzy rule: A genetic approach, Fuzzy Systems A.I. Rep. Letters, 3 (1994) 57–70.Google Scholar
  64. 64.
    S. Goonatilake, S. Khebbal eds., Intelligent Hybrid Systems, John Wiley, Sons, New York 1995.Google Scholar
  65. 65.
    M.M. Gupta, J. Qi, On fuzzy neuron models, in: Proceedings of International Joint Conference on Neural Networks, Seattle, 1991 431–436.Google Scholar
  66. 66.
    M.M. Gupta, J. Qi, On fuzzy neuron models, in: L.A. Zadeh, J. Kacprzyk eds., Fuzzy Logic for the Management of Uncertainty (J. Wiley, New York, 1992 ) 479–491.Google Scholar
  67. 67.
    M.M. Gupta, Fuzzy logic, neural networks, Proc. 2nd Internat. Conf. on Fuzzy logic, Neural Networks, Iizuka, Japan, 1992 157–160.Google Scholar
  68. 68.
    M.M. Gupta, M.B. Gorzalczany, Fuzzy neuro-computation technique, its application to modeling, control, in: Proc. IEEE Internat. Conf on Fuzzy Systems, San Diego, 1992 1271–1274.Google Scholar
  69. 69.
    M.M. Gupta, D.H. Rao, On the principles of fuzzy neural networks, Fuzzy Sets, Systems, 59 (1993) 271–279.CrossRefGoogle Scholar
  70. 70.
    S.K. Halgamuge, M. Glesner, Neural networks in designing fuzzy systems for real world applications, Fuzzy Sets, Systems, 65 (1994) 1–12.CrossRefGoogle Scholar
  71. C.J. Harris, C.G. Moore,, M. Brown, Intelligent control, aspects of fuzzy logic, neural networks (World Scientific Press, 1993).Google Scholar
  72. 72.
    C.J. Harris ed., Advances in Intelligent Control ( Taylor, Francis, London, 1994 ).MATHGoogle Scholar
  73. 73.
    Y. Hayashi, J.J. Buckley, E. Czogala, Systems engineering applications of fuzzy neural networks, Journal of Systems Engineering, 2 (1992) 232–236.Google Scholar
  74. 74.
    Y. Hayashi, J.J. Buckley, E. Czogala, Fuzzy neural controller, in: Proc. IEEE Internat. Conf on Fuzzy Systems, San Diego, 1992 197–202.Google Scholar
  75. 75.
    Y. Hayashi, H. Nomura, H. Yamasaki, N. Wakami, Construction of fuzzy inference rules by NFD, NDFL, International Journal of Approximate Reasoning, 6 (1992) 241–266.MATHCrossRefGoogle Scholar
  76. 76.
    Y. Hayashi, Neural expert system using fuzzy teaching input, in: Proc. IEEE Internat. Conf on Fuzzy Systems, San Diego, 1992 485–491.Google Scholar
  77. 77.
    Y. Hayashi, J.J. Buckley, E. Czogala, Fuzzy neural network with fuzzy signals, weight, International Journal of Intelligent Systems,8(1992) 527537.Google Scholar
  78. 78.
    Y. Hayashi, J.J. Buckley, E. Czogala, Direct fuzzification of neural network, fuzzified delta rule, Proc. 2nd Internat. Conf. on Fuzzy logic, Neural Networks, Iizuka, Japan, 1992 73–76.Google Scholar
  79. 79.
    Y. Hayashi, J.J. Buckley, Direct fuzzification of neural networks, in: Proceedings of 1st Asian Fuzzy Systems Symposium, Singapore, 1993 560–567.Google Scholar
  80. 80.
    Y. Hayashi, J.J. Buckley, Approximations between fuzzy expert systems, neural networks, International Journal of Approximate Reasoning, 10 (1994) 63–73.MATHCrossRefGoogle Scholar
  81. 81.
    K. Hirota, W. Pedrycz, Knowledge-based networks in classification problems, Fuzzy Sets, Systems, 51 (1992) 1–27.MathSciNetCrossRefGoogle Scholar
  82. 82.
    K. Hirota, W. Pedrycz, OR/AND neuron in modeling fuzzy set connectives, IEEE Transactions on Fuzzy Systems,2(994) 151–161.Google Scholar
  83. 83.
    K. Hirota, W. Pedrycz, Fuzzy modelling environment for designing fuzzy controllers, Fuzzy Sets, Systems, 70 (1995) 287–301.MathSciNetCrossRefGoogle Scholar
  84. 84.
    Hitachi, Neuro, fuzzy logic automatic washing machine, fuzzy logic drier, Hitachi News Rel., No. 91–024 (Feb. 26, 1991). Hitachi, 1991 (in Japanese).Google Scholar
  85. 85.
    S. Horikowa, T. Furuhashi, Y. Uchikawa, On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm, IEEE Transactions on Neural Networks,3(1992).Google Scholar
  86. 86.
    S. Horikowa, T. Furuhashi, Y. Uchikawa, On identification of structures in premises of a fuzzy model using a fuzzy neural network, in: Proc. IEEE International Conference on Fuzzy Systems, San Francisco, 1993 661–666.Google Scholar
  87. 87.
    L. Huang, Bai-Ling Zhang, Qian Huang, Robust interval regression analysis using neural networks, Fuzzy Sets, Systems, 97 (1998) 337–347.CrossRefGoogle Scholar
  88. 88.
    K.J. Hunt, D. Sbarbaro-Hofer, R. Zbikowski, P.J. Gawthrop, Neural networks for control systems–a survey, Automatica, 28 (1992) 1083–1112.MATHCrossRefGoogle Scholar
  89. 89.
    H. Ichihashi, Iterative fuzzy modelling, a hierarchical network, in: R.Lowen, M.Roubens eds., Proceedings of the Fourth IFSA Congress, Vol. Engineering, Brussels, 1991 49–52.Google Scholar
  90. 90.
    H. Ishibuchi, R. Fujioka, H. Tanaka, An architecture of neural networks for input vectors of fuzzy numbers, in: Proc. IEEE Internat. Conf on Fuzzy Systems, San Diego, 1992 1293–1300.Google Scholar
  91. 91.
    H Ishibuchi, K. Nozaki, H. Tanaka, Distributed representation of fuzzy rules, its application to pattern classification, Fuzzy Sets, Systems, 52 (1992) 21–32.CrossRefGoogle Scholar
  92. 92.
    H. Ishibuchi, H. Tanaka, Approximate pattern classification using neural networks, in: R.Lowen, M.Roubens eds., Fuzzy Logic: State of the Art (Kluwer, Dordrecht, 1993 ) 225–236.CrossRefGoogle Scholar
  93. 93.
    H. Ishibuchi, K. Nozaki, H. Tanaka, Efficient fuzzy partition of pattern space for classification problems, Fuzzy Sets, Systems, 59 (1993) 295–304.CrossRefGoogle Scholar
  94. 94.
    H. Ishibuchi, R. Fujioka, H. Tanaka, Neural networks that learn from fuzzy IF-THEN rules, IEEE Transactions on Fuzzy Systems,1(993) 85–97.Google Scholar
  95. 95.
    H. Ishibuchi, H. Okada, H. Tanaka, Fuzzy neural networks with fuzzy weights, fuzzy biases, in: Proc. IEEE Internat. Conference on Neural Networks, San Francisco, 1993 447–452.Google Scholar
  96. 96.
    H. Ishibuchi, K. Kwon, H. Tanaka, Implementation of fuzzy IF-THEN rules by fuzzy neural networks with fuzzy weights, in: Proceedings of EUFIT’93 Conference, September 7–10, 1993 Aachen, Germany, Verlag der Augustinus Buchhandlung, Aachen, 1993 209–215.Google Scholar
  97. 97.
    H. Ishibuchi, K. Kwon, H. Tanaka, Learning of fuzzy neural networks from fuzzy inputs, fuzzy targets, in: Proc. 5th IFSA World Congress, Seoul, Korea, 1993 147–150.Google Scholar
  98. 98.
    H. Ishibuchi, K. Nozaki, H. Tanaka, Empirical study on learning in fuzzy systems, in: Proc. 2nd IEEE Internat. Conference on Fuzzy Systems, San Francisco, 1993 606–611.Google Scholar
  99. 99.
    H. Ishibuchi, K. Nozaki, N. Yamamato, H. Tanaka, Genetic operations for rule selection in fuzzy classification systems, in: Proc. 5th IFSA World Congress, Seoul, Korea, 1993 15–18.Google Scholar
  100. 100.
    H. Ishibuchi, K. Nozaki, N. Yamamato, Selecting fuzzy rules by genetic algorithm for classification problems, in: Proc. 2nd IEEE Internat. Conference on Fuzzy Systems, San Francisco, 1993 1119–1124.Google Scholar
  101. 101.
    H Ishibuchi, H. Okada, H. Tanaka, Interpolation of fuzzy IF-THEN rules by neural networks, International Journal of Approximate Reasoning, 10 (1994). 3–27.CrossRefGoogle Scholar
  102. 102.
    H. Ishibuchi, K. Nozaki, N. Yamamato, H. Tanaka, Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms, Fuzzy Sets, Systems, 65 (1994) 237–253.CrossRefGoogle Scholar
  103. 103.
    H. Ishibuchi, K. Kwon, H. Tanaka, A learning algorithm of fuzzy neural networks with triangular fuzzy weights, Fuzzy Sets, Systems,71(1995) 277293.Google Scholar
  104. 104.
    H. Ishigami, T. Fukuda, T. Shibita, F. Arai, Structure optimization of fuzzy neural network by genetic algorithm, Fuzzy Sets, Systems, 71 (1995) 257–264.CrossRefGoogle Scholar
  105. 105.
    Masumi Ishikawa, Teppei Moriyama, Prediction of time series by a structural learning of neural networks, Fuzzy Sets, Systems,(82)(1996) 167–176.Google Scholar
  106. 106.
    J.-S. Roger Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst., Man,, Cybernetics, 23 (1993) 665–685.CrossRefGoogle Scholar
  107. 107.
    Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy, Soft Computing: A Computational Approach to Learning, Machine Intelligence, Prentice Hall, 1996.Google Scholar
  108. 108.
    Nikola K. Kasabov, Learning fuzzy rules, approximate reasoning in fuzzy neural networks, hybrid systems, Fuzzy Sets, Systems,(82)(1996) 135149.Google Scholar
  109. 109.
    N.K. Kasabov, R.I. Kilgour, S.J. Sinclair, From hybrid adjustable neuro-fuzzy systems to adaptive connectionist-based systems for phoneme, word recognition, Fuzzy Sets, Systems, 103 (1999) 349–367.CrossRefGoogle Scholar
  110. 110.
    N.K. Kasabov, R.Kozma, Neuro-Fuzzy Techniques for Intelligent Information Systems, Studies Fuzziness, Soft Computing, Vol. 30, Physica-Verlag, Heidelberg, 1999.Google Scholar
  111. 111.
    J.M. Keller, D. Hunt, Incorporating fuzzy membership functions into the perceptron algorithm, IEEE Transactions on Pattern. Anal. Mach. Intell., 7 (1985) 693–699.CrossRefGoogle Scholar
  112. 112.
    J.M. Keller, R.R. Yager, H.Tahani, Neural network implementation of fuzzy logic, Fuzzy Sets, Systems, 45 (1992) 1–12.MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    J.M. Keller, H.Tahani, Backpropagation neural networks for fuzzy logic, Information Sciences, 6 (1992) 205–221.CrossRefGoogle Scholar
  114. 114.
    J.M. Keller, H Tahani, Implementation of conjunctive, disjunctive fuzzy logic rules with neural networks, International Journal of Approximate Reasoning, 6 (1992) 221–240.MATHCrossRefGoogle Scholar
  115. 115.
    J.M. Keller, R. Krishnapuram, Z.H. Chen, O. Nasraoui, Fuzzy additive hybrid operators for network-based decision making, International Journal of Intelligent Systems 9 (1994) 1001–1023.CrossRefGoogle Scholar
  116. 116.
    P.S. Khedkar, Learning as adaptive interpolation in neural fuzzy systems, in: J.M. Zurada, R.J. Marks, C.J. Robinson eds., Computational Intelligence: Imitating Life ( IEEE Press, New York, 1994 ) 31–42.Google Scholar
  117. 117.
    Y.S. Kim, S. Mitra, An adaptive integrated fuzzy clustering model for pattern recognition, Fuzzy Sets, Systems, 65 (1994) 297–310.CrossRefGoogle Scholar
  118. 118.
    F. Klawonn, V. Novak, The relation between inference, interpolation in the framework of fuzzy systems, Fuzzy Sets, Systems,(81)(1996) 331–354.Google Scholar
  119. 119.
    F. Klawonn, R. Kruse, Constructing a fuzzy controller from data, Fuzzy Sets, Systems,(85)(1997) 177–193.Google Scholar
  120. 120.
    S.G. Kong, B. Kosko, Adaptive fuzzy systems for backing up a truck-andtrailer, IEEE Transactions on Neural Networks, 3 (1992) 211–223.CrossRefGoogle Scholar
  121. 121.
    B. Kosko, Neural Networks, Fuzzy Systems ( Prentice-Hall, Englewood Cliffs, 1992 ).Google Scholar
  122. 122.
    R. Krishnapuram, J. Lee, Fuzzy-set-based hierarchical networks for information fusion in computer vision, Neural Networks, 5 (1992) 335–350.CrossRefGoogle Scholar
  123. 123.
    R. Kruse, J. Gebhardt, R. Palm eds., Fuzzy Systems in Computer Science ( Vieweg, Braunschweig, 1994 ).Google Scholar
  124. 124.
    D.C. Kuncicky, A fuzzy interpretation of neural networks, in: Proceedings of 3rd IFSA Congress, 1989 113–116.Google Scholar
  125. 125.
    R.J. Kuo, P.H. Cohen, Manufacturing process control through integration of neural networks, fuzzy model, Fuzzy Sets, Systems, 98 (1998) 15–31.CrossRefGoogle Scholar
  126. 126.
    H.K. Kwan, Y.Cai, A fuzzy neural network, its application to pattern recognition, IEEE Transactions on Fuzzy Systems, 3 (1994) 185–193.CrossRefGoogle Scholar
  127. 127.
    S.C. Lee, E.T. Lee, Fuzzy sets, neural networks, Journal of Cybernetics 4 (1974) 83–103.CrossRefGoogle Scholar
  128. 128.
    S.C. Lee, E.T. Lee, Fuzzy neural networks, Math. Biosci. 23 (1975) 151–177.MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    H.-M. Lee, W.-T. Wang, A neural network architecture for classification of fuzzy inputs, Fuzzy Sets, Systems, 63 (1994) 159–173.CrossRefGoogle Scholar
  130. 130.
    M. Lee, S.Y. Lee, C.H. Park, Neuro-fuzzy identifiers, controllers, J. of Intelligent Fuzzy Systems, 6 (1994) 1–14.Google Scholar
  131. 131.
    K.-M. Lee, D.-H. Kwang, H.L. Wang, A fuzzy neural network model for fuzzy inference, rule tuning,International Journal of Uncertainty, Fuzziness, Knowledge-Based Systems, 3 (1994) 265–277.MathSciNetCrossRefGoogle Scholar
  132. 132.
    Xiaozhong Li, Da Ruan, Novel neural algorithms based on fuzzy 6 rules for solving fuzzy relation equations: Part I, Fuzzy Sets, Systems,(90)(1997) 11–23.Google Scholar
  133. 133.
    Wei Li, Chenyu Ma, F.M. Wahl, A neuro-fuzzy system architecture for behavior-based control of a mobile robot in unknown environments, Fuzzy Sets, Systems, 87 (1997) 133–140.CrossRefGoogle Scholar
  134. 134.
    Xiaozhong Li, Da Ruan, Novel neural algorithms based on fuzzy Ä rules for solving fuzzy relation equations: Part II, Fuzzy Sets, Systems, 103 (1999) 473–486.CrossRefGoogle Scholar
  135. 135.
    C.T. Lin, C.S.G. Lee, Neural-network-based fuzzy logic control, decision system, IEEE Transactions on Computers, 40 (1991) 1320–1336.MathSciNetCrossRefGoogle Scholar
  136. 136.
    Y. Lin, G.A. Cunningham III, A new approach to fuzzy-neural system modeling, IEEE Transactions on Fuzzy systems, 3 (1995) 190–198.CrossRefGoogle Scholar
  137. 137.
    C.T. Lin, Y.C. Lu, A neural fuzzy system with linguistic teaching signals, IEEE Transactions on Fuzzy Systems, 3 (1995) 169–189.CrossRefGoogle Scholar
  138. 138.
    Chin-Teng Lin, C.S. George Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, (Prentice Hall, Englewood Cliffs, New York, 1996 ).Google Scholar
  139. 139.
    R.J. Machado, A.F. Rocha, A hybrid architecture for fuzzy connectionist expert systems, in: A. Kandel, G. Langholz eds., Hybrid Architectures for Intelligent Systems ( CRC Press, Boca Raton, FL, 1992 ).Google Scholar
  140. 140.
    R.A. Marques Pereira, L. Mich, L. Gaio, Curve reconstruction with dynamical fuzzy grading, weakly continuous constraints, in: Proceedings of the 2nd Workshop on Current Issues in Fuzzy Technologies, Trento, June 1992, (Dipartimento di Informatica e Studi Aziendali, Universitâ di Trento 1993 ) 77–85.Google Scholar
  141. 141.
    L. Medsker, Hybrid Neural Network, Expert Systems ( Kluwer Academic Publishers, Boston, 1994 ).CrossRefGoogle Scholar
  142. 142.
    K. Michels, Numerical stability analysis for a fuzzy or neural network controller, Fuzzy Sets, Systems, 89 (1997) 335–350CrossRefGoogle Scholar
  143. 143.
    S.Mitra, S.K.Pal, Neuro-fuzzy expert systems: overview with a case study, in: S.Tzafestas, A.N. Venetsanopoulos eds., Fuzzy Reasoning in Information, Decision, Control Systems (Kluwer, Dordrecht, 1994 ) 121–143.Google Scholar
  144. 144.
    S.Mitra, S.K.Pal, Self-organizing neural network as a fuzzy classifier, IEEE Trans. Syst., Man,, Cybernetics, 24 (1994) 385–399.CrossRefGoogle Scholar
  145. 145.
    S.Mitra, S.K.Pal, Fuzzy multi-layer perceptron, inferencing, rule generation, IEEE Transactions on Neural Networks, 6 (1995) 51–63.CrossRefGoogle Scholar
  146. 146.
    S.Mitra, Fuzzy MLP based expert system for medical diagnosis, Fuzzy sets, Systems, 65 (1994) 285–296.CrossRefGoogle Scholar
  147. T. Morita, M. Kanaya, T. Inagaki, Photo-copier image density control using neural network, fuzzy theory. in: Proceedings of the Second International Workshop on Industrial Fuzzy Control, Intelligent Systems,1992 10–16.Google Scholar
  148. 148.
    D. Nauck, F. Klawonn, R. Kruse, Fuzzy sets, fuzzy controllers, neural networks, Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, reihe Medizin, 41 (1992) 99–120.Google Scholar
  149. 149.
    D. Nauck, R. Kruse, A fuzzy neural network learning fuzzy control rules, membership functions by fuzzy error backpropagation, in: Proceedings of IEEE Int. Conference on Neural Networks, San Francisco, 1993 1022–1027.Google Scholar
  150. 150.
    D. Nauck, F. Klawonn, R. Kruse, Combining neural networks, fuzzy controllers, in: E.P. Klement, W. Slany eds., Fuzzy Logic in Artificial Intelligence, ( Springer-Verlag, Berlin, 1993 ) 35–46.CrossRefGoogle Scholar
  151. 151.
    D. Nauck, R. Kruse, NEFCON-I: An X-Window based simulator for neural fuzzy controllers, in: Proceedings of IEEE Int. Conference on Neural Networks, Orlando, 1994 1638–1643.Google Scholar
  152. 152.
    D. Nauck, Fuzzy neuro systems: An overview, in: R. Kruse, J. Gebhardt, R. Palm eds., Fuzzy systems in Computer Science ( Vieweg, Wiesbaden, 1994 ) 91–107.CrossRefGoogle Scholar
  153. 153.
    D. Nauck, Building neural fuzzy controllers with NEFCON-I. in: R. Kruse, J. Gebhardt, R. Palm eds., Fuzzy systems in Computer Science (Vieweg, wiesbaden, 1994 ) 141–151.Google Scholar
  154. 154.
    D. Nauck, F. Klawonn, R. Kruse, Neurale Netze, Fuzzy-Systeme (Vieweg, wiesbaden, 1994 ).Google Scholar
  155. 155.
    D. Nauck, R. Kruse, NEFCLASS - A neuro-fuzzy approach for the classification of data, in: K.M. George et al eds., Applied Computing, Proceedings of the 1995 ACM Symposium on Applied Computing, Nashville, February 26–28, 1995, ACM Press, 1995.Google Scholar
  156. 156.
    D. Nauck, R. Kruse, Designing Neuro-Fuzzy Systems Through Backpropagation, in: W.Pedrycz ed., Fuzzy Modelling: Paradigms, Practice, Kluwer, 1996 203–228.Google Scholar
  157. 157.
    D. Nauck, F. Klawonn, R. Kruse, Foundations on Neuro-Fuzzy Systems, Wiley, Chichester, 1997.Google Scholar
  158. 158.
    R. Narita, H. Tatsumi, H. Kanou, Application of neural networks to household applications. Toshba Rev. 46, 12 (December 1991) 935–938. (in Japanese)Google Scholar
  159. 159.
    J. Nie, D. Linkers, Fuzzy Neural Control - Principles, Algorithms, Applications ( Prentice-Hall, Englewood Cliffs, 1995 ).Google Scholar
  160. 160.
    J. Nie J. Nie, T.H. Lee, D.A. Linkers, A note on the integration of fuzzy systems with neural networks under a TLTT framework, Fuzzy Sets, Systems, 87 (1997) 277–289.CrossRefGoogle Scholar
  161. 161.
    Nikkei Electronics, New trend in consumer electronics: Combining neural networks, fuzzy logic, Nikkei Elec.,528(1991) 165–169 (In Japanese).Google Scholar
  162. 162.
    H. Nomura, I. Hayashi, N. Wakami, A learning method of fuzzy inference rules by descent method, in: Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, 1992 203–210.Google Scholar
  163. 163.
    H. Okada, N. Watanabe, A. Kawamura, K. Asakawa, Initializing multi-layer neural networks with fuzzy logic. in: Proceedings of the International Joint Conference on Neural Networks, Baltimore, 1992 239–244.Google Scholar
  164. 164.
    Ralf Ostermark, A fuzzy neural network algorithm for multigroup classification, Fuzzy Sets, Systems, 105 (1999) 113–122.CrossRefGoogle Scholar
  165. 165.
    S.K.Pal, S.Mitra, Fuzzy versions of Kohonen’s net, MLP-based classification: Performance evaluation for certain nonconvex decision regions, Information Sciences, 76 (1994) 297–337.CrossRefGoogle Scholar
  166. 166.
    W. Pedrycz, W.C. Card, Linguistic interpretation of self-organizing maps, in: Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, 1992 371–378.Google Scholar
  167. 167.
    W. Pedrycz, Fuzzy Control, Fuzzy Systems ( Wiley, New York, 1993 ).Google Scholar
  168. 168.
    W. Pedrycz, Fuzzy Sets Engineering ( CRC Press, Boca Raton, 1995 ).MATHGoogle Scholar
  169. 169.
    C. Posey, A.Kandel, G. Langholz, Fuzzy hybrid systems, in: A. Kandel, G. Langholz eds., Hybrid architectures for Intelligent Systems ( CRC Press, Boca Raton, Florida, 1992 ) 174–196.Google Scholar
  170. 170.
    G.V.S. Rajau, J Zhou, Adaptive hierarchical fuzzy controller, IEEE Trans. Syst., Man,, Cybernetics, 23 (1993) 973–980.CrossRefGoogle Scholar
  171. 171.
    A.L. Ralescu ed., Fuzzy Logic in Artificial Intelligence, Proc. IJCAI’93 Workshop, Chambéry, France, Lecture Note in artificial Intelligence, Vol. 847 ( Springer, Berlin, 1994 ).Google Scholar
  172. 172.
    J. Rasmussen, Diagnostic reasoning in action, IEEE Trans. Syst., Man,, Cybernetics, 23 (1993) 981–992.CrossRefGoogle Scholar
  173. 173.
    I. Requena, M. Delgado, R-FN: A model of fuzzy neuron, in: Proc. 2nd Int. Conf. on Fuzzy Logic ê4 Neural Networks, Iizuka, Japan, 1992 793–796.Google Scholar
  174. 174.
    R.A.Ribeiro, H.-J. Zimmermann, R.R.Yager, J. Kacprzyk eds., Soft Computing in Financial Engineering, Studies in Fuzziness, Soft Computing, Vol. 28, Springer-Verlag, Berlin/Heidelberg, 1999.Google Scholar
  175. 175.
    T. Riissanen, An Experiment with Clustering, Proceedings MEPP92, International Seminar on Fuzzy Control through Neural Interpretations of Fuzzy Sets, Mariehamn, Aland, June 15–19, 1992, Abo Akademi tryckeri, Abo, 1992, 57–65.Google Scholar
  176. 176.
    Sanyo, Electric fan series in 1991, Sanyo News Rel.,(March 14, 1991). Sanyo, 1991 (In Japanese).Google Scholar
  177. 177.
    E. Sanchez, Fuzzy logic knowledge systems, artificial neural networks in medicine, biology, in: R.R. Yager, L.A. Zadeh eds., An Introduction to Fuzzy Logic Applications in Intelligent Systems ( Kluwer, Boston, 1992 ) 235–251.CrossRefGoogle Scholar
  178. 178.
    J.D. Schaffer, Combinations of genetic algorithms with neural networks or fuzzy systems, in: J.M. Zurada, R.J. Marks, C.J. Robinson eds., Computational Intelligence: Imitating Life ( IEEE Press, New York, 1994 ) 371–382.Google Scholar
  179. 179.
    R. Serra, G. Zanarini, Complex Systems, Cognitive Processes ( Springer Verlag, Berlin, 1990 ).CrossRefGoogle Scholar
  180. 180.
    J.J. Shann, H.C. Fu, A fuzzy neural network for rule acquiring on fuzzy control system, Fuzzy Sets, Systems, 71 (1995) 345–357.CrossRefGoogle Scholar
  181. 181.
    P. Simpson, Fuzzy min-max neural networks: 1.Classification, IEEE Transactions on Neural Networks, 3 (1992) 776–786.CrossRefGoogle Scholar
  182. 182.
    P. Simpson, Fuzzy min-max neural networks: 2.Clustering, IEEE Transactions on Fuzzy systems, 1 (1993) 32–45.CrossRefGoogle Scholar
  183. 183.
    Mu-Chun Su, Ching-Tang Hsieh, Chieh-Ching Chin, A neuro-fuzzy approach to speech recognition without time alignment, Fuzzy Sets, Systems, 98 (1998) 33–41CrossRefGoogle Scholar
  184. 184.
    M. Sugeno, G.-K. Park, An approach to linguistic instruction based learning, International Journal of Uncertainty, Fuzziness, Knowledge-Based Systems, 1 (1993) 19–56.MATHCrossRefGoogle Scholar
  185. 185.
    S.M. Sulzberger, N.N.Tschichold-Gürman, S.J. Vestli, FUN: Optimization of fuzzy rule based systems using neural networks, in: Proc. IEEE Int. Conference on Neural Networks, San Francisco, 1993 312–316.Google Scholar
  186. 186.
    C.-T. Sun, J.-S. Jang, A neuro-fuzzy classifier, its applications, in: Proc. IEEE Int. Conference on Neural Networks, San Francisco, 1993 94–98.Google Scholar
  187. H. Takagi, Fusion technology of fuzzy theory, neural networks - survey, future directions, in: Proc. First Int. Conf. on Fuzzy Logic 8 Neural Networks,1990 13–26.Google Scholar
  188. 188.
    H. Takagi, I. Hayashi, NN-driven fuzzy reasoning. International Journal of Approximate Reasoning, 3 (1991) 191–212.CrossRefGoogle Scholar
  189. 189.
    H. Takagi, N. Suzuki, T. Koda, Y. Kojima, neural networks designed on approximate reasoning architecture, their applications, IEEE Transactions on Neural Networks, 3 (1992) 752–760.CrossRefGoogle Scholar
  190. 190.
    I.B.Turksen, Fuzzy expert systems for IE/OR/MS, Fuzzy Sets, Systems, 51 (1992) 1–27.CrossRefGoogle Scholar
  191. 191.
    K. Uehara, M. Fujise, Learning of fuzzy inference criteria with artificial neural network, in: Proc. 1st Int. Conf. on Fuzzy Logic ‘4 Neural Networks, Iizuka, Japan, 1990 193–198.Google Scholar
  192. 192.
    M. Umano, Y, Ezawa, Execution of approximate reasoning by neural network, Proceedings of FAN Symposium, 1991 267–273 (in Japanese).Google Scholar
  193. 193.
    H. Virtanen, Combining, incrementing fuzzy evidence - Heuristic, formal approaches to fuzzy logic programming, in: R.Lowen, M.Roubens eds., Proceedings of the fourth IFSA Congress, vol. Mathematics Brussels, 1991 200203.Google Scholar
  194. 194.
    L.-X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples, IEEE Trans. Syst., Man,, Cybernetics, 22 (1992) 1414–1427.MathSciNetCrossRefGoogle Scholar
  195. 195.
    Xiaomei Wang, James M. Keller, Human-based spatial relationship generalization through neural/fuzzy approaches, Fuzzy Sets, Systems, 101 (1999) 5–20.CrossRefGoogle Scholar
  196. 196.
    H. Watanabe et al., Application of fuzzy discriminant analysis for diagnosis of valvular heart disease, IEEE Transactions on Fuzzy Systems, 2 (1994) 267–276.CrossRefGoogle Scholar
  197. 197.
    P.J. Werbos, Neurocontrol, fuzzy logic: connections, designs, International Journal of Approximate Reasoning, 6 (1992) 185–219.CrossRefGoogle Scholar
  198. 198.
    R.R. Yager, Using fuzzy logic to build neural networks, in: R.Lowen, M.Roubens eds., Proceedings of the Fourth IFSA Congress, Vol. Artifical intelligence, Brussels, 1991 210–213.Google Scholar
  199. 199.
    R.R. Yager, Implementing fuzzy logic controllers using a neural network framework, Fuzzy Sets, Systems, 48 (1992) 53–64.MathSciNetCrossRefGoogle Scholar
  200. 200.
    R.R. Yager, L.A. Zadeh eds., Fuzzy Sets, Neural Networks,, Soft Computing ( Van Nostrand Reinhold, New York, 1994 ).Google Scholar
  201. 201.
    T Yamakawa, A neo fuzzy neuron, its applications to system identification, prediction of chaotic behaviour, in: J.M. Zurada, R.J. Marks, C.J. Robinson eds., Computational Intelligence: Imitating Life ( IEEE Press, New York, 1994 ) 383–395.Google Scholar
  202. 202.
    J. Yan, M. Ryan, J. Power, Using Fuzzy Logic - Towards Intelligent Systems ( Prentice-Hall, Englewood Cliffs, 1994 ).Google Scholar
  203. 203.
    Y. Yam, K.S. Leung eds., Future Directions of Fuzzy Theory, Systems ( World Scientific, Singapore, 1994 ).Google Scholar
  204. 204.
    L.A. Zadeh, J. Kacprzyk eds., Computing with Words in Information/Intelligent Systems 1, Studies Fuzziness, Soft Computing, Vol. 33, Physica-Verlag, Heidelberg, 1999.Google Scholar
  205. 205.
    L.A. Zadeh, J. Kacprzyk eds., Computing with Words in Information/Intelligent Systems 2, Studies Fuzziness, Soft Computing, Vol. 34, Physica-Verlag, Heidelberg, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Robert Fullér
    • 1
  1. 1.Department of Operations ResearchEötvös Lorànd UniversityBudapestHungary

Personalised recommendations