Skip to main content

A Framework for the Retrieval of Multimedia Objects Based on Four-Valued Fuzzy Description Logics

  • Chapter
Soft Computing in Information Retrieval

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 50))

Abstract

Knowledge representation, in particular logic, combined together with database and information retrieval techniques may play an important role in the de-velopment of so-called intelligent multimedia retrieval Systems. In this paper we will present a logic-based framework in which multimedia objects’ medium dependent properties (objects’ low level features) and multimedia objects’ medium independent properties (abstract objects’ features, or objects’ semantics) are addressed in a principled way. The framework is logic-based as it relies on the use of a four-valued fuzzy Description Logics for (i) representing the semantics of multimedia objects and (ii) for defining the retrieval process in terms of logical entailment. Low level features are not represented explicitly within the logic, but may be addressed by means of procedural attachments over a concrete domain. Description Logics are object-oriented representation formalisms capturing the most popular features of structured representation of knowledge. They are a good compromise between computational complexity and expressive power and, thus, may be seen as a promising tool within the context of logic-based multimedia information retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S., Hüll, R. and Vianu, V. (1995). Foundations of Databases. Addison Wesley Publ. Co., Reading, Massachussetts, USA.

    MATH  Google Scholar 

  2. Al-Khatib, W., Francis Day, Y.F., Ghafoor, A., and Berra, P.B. (1999). Se-mantic modeling and knowledge representation in Multimedia Diabases. IEEE Transactions on Knowledge and Data Engineering, 11(1):64–80.

    Article  Google Scholar 

  3. Anderson, A.R. and Belnap, N.D. (1975). Entailmentthe logic of relevance and necessity. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  4. Anwar, T.M., Beck, H.W. and Navathe, S.B. (1992). Knowledge mining by imprecise querying: A classification-based approach. In Proceedings of the 8th International Conference on Data Engineering, pages 622–630.

    Google Scholar 

  5. Baader, F. and Hanschke, P. (1991). A schema for integrating concrete domains into concept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91), pages 452–457, Sydney.

    Google Scholar 

  6. Belnap, N.D. (1977). A useful four-valued logic. In Gunnar Epstein and J. Michael Dünn, editors, Modern uses of multiple-valued logic, pages 5–37. Reidel, Dordrecht, NL.

    Chapter  Google Scholar 

  7. Bollinger, T. and Pietät, U. (1991). The LILOG knowledge representation system. ACM SIGART Bulletin, 2(3):22–27.

    Article  Google Scholar 

  8. Bordogna, G., Carrara, P. and Pasi, G. (1991). Query term weights as con-straints in fuzzy information retrieval. Information Processing and Management, 27(l):15–26.

    Article  Google Scholar 

  9. Brachman, R.J., Selfridge, P.G., Terveen, L.G., Altman, B., Borgida, A., Halpern, F., Kirk, T., Lazar, A., McGuinness, D.L., and Alperin, L., Resnick, L.A. (1992). Knowledge representation support for data archeology. In Y. Yesha, editor, Proc. of the Int. Conf. on Information and Knowledge Management (CIKM-92), pages 457–464.

    Google Scholar 

  10. Buchheit, M., Donini, F.M. and Schaerf, A. (1993). Decidable reasoning in ter-minological knowledge representation Systems. Journal of Artificial Intelligence Research, 1:109–138.

    MathSciNet  MATH  Google Scholar 

  11. Chen, J. and Kundu, S. (1996). A sound and complete fuzzy logic system using Zadeh’s implication operator. In Zbigniew W. Ras and Michalewicz Maciek, editors, Proc. of the 9th Int. Sym. on Methodologies for Intelligent Systems (ISMIS-96), number 1079 in Lecture Notes In Artificial Intelligence, pages 233–242. Springer-Verlag.

    Google Scholar 

  12. Chu, W.W., Cardenas, A.F. and Taira, R.K. (1998). Knowledge-based image retrieval with spatial and temporal constructs. IEEE Transactions on Knowledge and Data Engineering, 10(6):872–888.

    Article  Google Scholar 

  13. Devanbu, R, Brachman, R.J., Selfridge, P.J. and Ballard, B.W. (1991). LASSIE: A knowledge-based Software Information System. Communications ofthe ACM, 34(5):36–49.

    Google Scholar 

  14. DL. Description Logic Web Home Page: http://www.dl.kr.org/dl, WWW.

  15. Donini, F.M., Lenzerini, M., Nardi, D. and Nutt, W. (1991). Tractable concept languages. In Proceedings of IJCAI-91, 12th International Joint Conference on Artificial Intelligence, pages 458–463, Sidney, Australia.

    Google Scholar 

  16. Duschka, M.O. and Levy, Y.A. (1997). Recursive plans for information gather-ing. In Proc. of the 15th Int. Joint Conf. on Artificial Intelligence (IJCAI-97), pages 778–784, Nagoya, Japan.

    Google Scholar 

  17. Gallier, J.H. (1986). Logic for Computer Science: Foundations of Automatic Theorem Proving. Harper & Row Publishers, New York.

    MATH  Google Scholar 

  18. Gobel, CA., Haul, C. and Bechhofer, S. (1996). Describing and classifying multimedia using the description logic GRAIL. In Proceedings of the SPIE Conference on Storage and Retrieval for Still Images and Video Databases IV (SPIE-96), pages 132–143, San Jose, CA, USA.

    Chapter  Google Scholar 

  19. Kerre, E.E., Zenner, R.B. and De Caluwe, R.M. (1986). The use of fuzzy set theory in information retrieval and databases: a survey. Journal of the American Society for Information Science, 37(5):341–345

    Google Scholar 

  20. Knoblock, C.A., Minton, S., Jose Luis, A., Ashish, N., Jay Modi, P., Ion, M., Philpot, A.G. and Tejada, S. (1998). Modeling web sources for information integration. In Proc. of the 15th Nat. Conf. on Artificial Intelligence (AAAI-98), pages 211–218.

    Google Scholar 

  21. Kraft, D.H. and Buel, D. (1983). Fuzzy sets and generalised boolean retrieval Systems. Int. J. Man-Machine Studies, 19:45–56.

    Article  Google Scholar 

  22. Lambrix, P. and Maleki, J. (1996). Learning composite concepts in description logics: A first step. In Proceedings of the 9th International Symposium on Methodologies for Intelligent Systems — ISMIS 96, LNAI 1079, pages 68–77, Zakopane, Poland.

    Google Scholar 

  23. Levesque, H.J. (1984). A logic of implicit and explicit belief. In Proc. of the 3th Nat. Conf. on Artificial Intelligence (AAAI-84), pages 198–202, Austin, TX, USA.

    Google Scholar 

  24. Meghini, C., Sebastiani, F. and Straccia, U. (1997). Modelling the retrieval of structured documents containing texts and images. In Proceedings of the First European Conference on Research and Advanced Technology for Digital Libraries, number 1324 in Lecture Notes in Computer Science, pages 325–344, Pisa, Italy.

    Chapter  Google Scholar 

  25. Meghini, C, Sebastiani, F. and Straccia, U. (1998). MLRLOG: A logic for multimedia information retrieval. In F. Crestani, M. Lalmas, and C.J. van Rijsbergen, editors, Logic and Uncertainty in Information Retrieval: Advanced models for the representation and retrieval of information, volume 4 of The Kluwer International Series On Information Retrieval, chapter 7, pages 151–185. Kluwer Academic Publishers, Boston, MA, USA.

    Chapter  Google Scholar 

  26. Meghini, C, and Straccia, U. (1996). A relevance terminological logic for information retrieval. In Proceedings of SIGIR-96, 19th International Conference on Research and Development in Information Retrieval, pages 197–205, Zürich, Switzerland.

    Google Scholar 

  27. Negoita, C.V. and Flondor, P. (1976). On fuzziness in information retrieval. Int. J. Man-Machine Studies, 8:711–716.

    Article  MATH  Google Scholar 

  28. Patel-Schneider, P.F. (1989). A four-valued semantics for terminological logics. Artificial Intelligence, 38:319–351.

    Article  MathSciNet  MATH  Google Scholar 

  29. Salton, G. and McGill, J.M. (1983). Introduction to Modern Information Retrieval. Addison Wesley Publ. Co., Reading, Massachussetts.

    MATH  Google Scholar 

  30. Schmidt-Schauß, M. and Smolka, G. (1991). Attributive concept descriptions with complements. Artificial Intelligence, 48:1–26.

    Article  MathSciNet  MATH  Google Scholar 

  31. Sebastiani, F. (1994). A probabilistic terminological logic for modelling infor-mation retrieval. In Proceedings of SIGIR-94, 17th ACM International Conference on Research and Development in Information Retrieval, pages 122–130, Dublin, Ireland. Published by Springer Verlag, Heidelberg, FRG.

    Google Scholar 

  32. Straccia, U. (1997). A four-valued fuzzy propositional logic. In Proc. ofthe 15th Int. Joint Conf. on Artificial Intelligence (IJCAI-97), pages 128–133, Nagoya, Japan.

    Google Scholar 

  33. Straccia, U. (1997). A sequent calculus for reasoning in four-valued description logics. In Proc. of the Int. Conf. on Analytic Tableaux and Related Meth-ods (TABLEAUX-97), number 1227 in Lecture Notes In Artificial Intelligence, pages 343–357, Pont-a-Mousson, France.

    Google Scholar 

  34. Straccia, U. (1998). A fuzzy description logic. In Proc. of the 15th Nat. Conf. on Artificial Intelligence (AAAI-98), pages 594–599.

    Google Scholar 

  35. Weida, R. and Litman, D. (1992). Terminological reasoning with constraint networks and an application to plan recognition. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-92), pages 282–293. Morgan Kaufmann, Los Altos, CA, USA.

    Google Scholar 

  36. Welty, C. (1998). Description logics for digital libraries. In International Workshop on Description Logics, Trento, Italy.

    Google Scholar 

  37. Yager, R.R. (1995). Fuzzy sets as a tool for modeling. In Jan van Leeuwen, editor, Computer Science Today, number 1000 in Lecture Notes in Computer Science, pages 536–548. Springer-Verlag.

    Chapter  Google Scholar 

  38. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3):338–353.

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeller, A. (1998). Versioning System models through description logic. In Proc. 8th International Symposium on System Configuration Management (SCM-8), Brüssels.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Straccia, U. (2000). A Framework for the Retrieval of Multimedia Objects Based on Four-Valued Fuzzy Description Logics. In: Crestani, F., Pasi, G. (eds) Soft Computing in Information Retrieval. Studies in Fuzziness and Soft Computing, vol 50. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1849-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1849-9_14

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2473-5

  • Online ISBN: 978-3-7908-1849-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics