Bayesian Network Models for Information Retrieval

  • Berthier Ribeiro-Neto
  • Ilmério Silva
  • Richard Muntz
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 50)


In this chapter, we apply Bayesian networks to the problem of retrieving information about a subject or topic and show that Bayesian networks provide an effective and flexible framework for dealing with information retrieval (IR) in general. Our discussion focus on two Bayesian networks models proposed in the literature namely, the inference network and the belief network models. We compare the expressiveness of these two models and show that the belief network model is more general. We also demonstrate that the belief network model is general enough to subsume the three classic IR models namely, the Boolean, the vector, and the probabilistic models. Further, we show that a belief network can be used to naturally incorporate pieces of evidence from past user sessions which leads to improved retrieval Performance. At the end, for comparative purposes, we review models of reasoning other than the Bayesian networks and characterize a taxonomy for them.


Information Retrieval Bayesian Network Information Retrieval System Inference Network Boolean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison Wesley, Essex, England. 513 pages.Google Scholar
  2. 2.
    Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Web site for the book modern information retrieval, 1999. Mirrors in Brazil, Chile and USA. In the USA, Scholar
  3. 3.
    Broglio, J., Callan, J., Croft, W.B., and Nachbar, D.W. (1995). Document retrieval and routing using the inquery system. In Proceedings ofthe Third Text Retrieval ConferenceTREC-3, Gaithersburg, Maryland. National Institute of Standards and Technology.Google Scholar
  4. 4.
    Callan, J. (1996). Document filtering with inference networks. In Proceedings ofthe 19th ACM SIGIR Conference, pages 262–269, Zürich, Switzerland.Google Scholar
  5. 5.
    Cooper, G.F. (1984). NESTOR: A Computer-based Medical Diagnostic Aid that Integrates Causal and Probabilistic Knowledge. PhD thesis, Medical Computer Science Group, Stanford University, Stanford, CA. Report HPP-84–48.Google Scholar
  6. 6.
    Cooper, G.F. (1990). The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42:393–405, 1990.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Croft, W.B., and Harper, D.J. (1979). Using probabilistic models of document retrieval without relevance information. Journal of Documentation, 35(4):285–295.CrossRefGoogle Scholar
  8. 8.
    da Silva, W.T. and Milidiu, R.L. (1993). Belief function model for information retrieval. Journal of the American Society for Information Science, 44(1):10–18.CrossRefGoogle Scholar
  9. 9.
    Elkan, C. (1993). The paradoxical success of fuzzy logic. Procs. llth National Conference on Aritificial Intelligence (AAAI-93), ll(l):698–703. MIT Press.Google Scholar
  10. 10.
    Fitzpatrick, L. and Dent, M. (1997). Automatic feedback using past queries: Social searching? In Proc of the 20th ACM SIGIR Int. Conference, pages 306–313, Philadelphia, PA.Google Scholar
  11. 11.
    Fuhr, N. (1995). Probabilistic datalog — a logic for powerful retrieval methods. In Proceedings of the 18th ACM SIGIR Conference, Seattle.Google Scholar
  12. 12.
    Fox, E.A., Salton, G. and Wu, H. (1983). Extended boolean information retrieval. Communications of the ACM, 26(11):1022–1036.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ginsberg, M.L. (1984). Non-monotonic reasoning using Dempster’s rule. In R. J. Brachman, editor, Proceedings of the National Conference on Artificial Intelligence, pages 126–129, Austin, Texas. William Kaufmann.Google Scholar
  14. 14.
    Haines, H. and Croft, W.B. (1993). Relevance feedback and inference networks. In Proc of the Sixteenth Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, pages 2–11, Pittsburgh, PA, USA.Google Scholar
  15. 15.
    Harman, H. (1992). Relevance feedback revisited. In Proceedings of the 15th ACM SIGIR Conference, Denmark.Google Scholar
  16. 16.
    Lowrance, H., Garvey, T. and Strat, T. (1986). A framework for evidential-reasoning Systems. In Tom Kehler and Stan Rosenschein, editors, Proceedings of the 5th National Conference on Artificial Intelligence. Volume 2, pages 896–903, Los Altos, CA. Morgan Kaufmann.Google Scholar
  17. 17.
    Nilson, N.J. (1986). Probabilistic logic. Artificial Intelligence, 28(l):71–87.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Park, Y.C., Han, Y.S. and Choi, K. (1995). Automatic thesaurus construction using bayesian networks. In International Conference on Information Knowledge and Management, Baltimore.Google Scholar
  19. 19.
    Pearl, J. and Verma, T. (1987). The logic of representing dependencies by directed graphs. In AAAI87, pages 374–379.Google Scholar
  20. 20.
    Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Conference. Morgan Kaufmann Publishers, Inc..Google Scholar
  21. 21.
    Radecki, T. (1976). Mathematic model of information retrieval based on the concept of a fuzzy thesaurus. Information Processing & Management, 12:313–318.MATHCrossRefGoogle Scholar
  22. 22.
    Raghavan, V.V. and Sever, H. (1995). On the reuse of past optimal queries. In Proceedings of the 18th ACM SIGIR Conference, Seattle.Google Scholar
  23. 23.
    Ribeiro, B.A.N. and Muntz, R. (1996). A belief network model for IR. In Proc. of the 19th ACM SIGIR Conference, pages 253–260, Zürich, Switzerland.Google Scholar
  24. 24.
    Rieh, E. and Knight, K. (1991). Artificial Intelligence. McGraw-Hill, New York, NY, second edition.Google Scholar
  25. 25.
    Russell, S.J. and Norvig, P. (1995). Artificial Intelligence. A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ.MATHGoogle Scholar
  26. 26.
    Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  27. 27.
    Shafer, G. (1992). Dempster-shafer theory. In S. C. Shapiro editor. Encyclope-dia of Artificial Intellingence, pages 330–331. Wiley, New York.Google Scholar
  28. 28.
    Shaw, W.M., Wood, J.B., Wood, R.E. and Tibbo, H.R. (1991). The cystic fibrosis database: Content and research opportunities. LISR, 13:347–366.Google Scholar
  29. 29.
    Shortliffe, E.H. and Buchanan, B.G. (1975). A model to inexaet reasoning in medicine. Math. Biosci., 23:351–379.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Turtle, H. and Croft, W.B. (1991). Evaluation of an inference network-based retrieval model. ACM Transactions on Information Systems, 9(3): 187–222.CrossRefGoogle Scholar
  31. 31.
    van Rijsbergen, C.J. (1976). Information Retrieval. Butterwords, UK.Google Scholar
  32. 32.
    Wong, S.K.M. and Yao, Y.Y. (1991). A probabilistic inference model for information retrieval. Information Systems, 16.Google Scholar
  33. 33.
    Wong, S.K.M. and Yao, Y.Y. (1995) On modeling information retrieval with probabilistic inference. ACM Transactions on Information Systems, 13(1):38–68.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8:338–353.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Zadeh, L.A. (1979). A theory of approximate reasoning. In J. E. Hayes, D. Michie, and L. I. Mikulich, editors, Machine Intelligence 9, pages 149–194. Halstead Press, New York, NY.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Berthier Ribeiro-Neto
    • 1
  • Ilmério Silva
    • 1
    • 2
  • Richard Muntz
    • 3
  1. 1.Computer Science DepartmentFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of InformaticsFederal University of UberlândiaUberlândiaBrazil
  3. 3.Computer Science DepartmentUniversity of CaliforniaLos AngelesUSA

Personalised recommendations