Advertisement

Fuzzy Nonlinear Filtering of Color Images: A Survey

  • Constantin Vertan
  • Vasile Buzuloiu
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 52)

Summary

This contribution is intended as a survey of the existing fuzzy (or fuzzy related) filtering techniques for multichannel (and color in particular) images. We propose a classification of all these approaches to color image processing into four categories, based on the importance that fuzzy theory receives during the filter design: crude fuzzy, fuzzy paradigm based, fuzzy aggregative and fuzzy inferential. These categories are not necessarily mutually exclusive, and their boundaries can also be fuzzy. We will show how the perceptual notion of JND (Just Noticeable Difference) can provide a fuzzy-like approach to color correctness evaluation.

Keywords

Color Image Color Space Fuzzy Rule Soft Decision Fuzzy Cluster Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbas J. and Domanski M., Vector Nonlinear Recursive Filters for Color Images,in: “Proceedings of IWSSIP’99–6th International Workshop on Systems, Signals and Image Processing” (Bratislava, Slovakia), pp. 30–33, 1999Google Scholar
  2. 2.
    Astola J., Haavisto P. and Neuvo Y., Vector Median Filters, Proc. IEEE, Vol. 78, No. 4, pp. 678–689, 1990Google Scholar
  3. 3.
    Barnett V., The Ordering of Multivariate Data,Journal of Royal Stat. Soc. A, Vol. 139, No. 3, pp. 318–354, 1976Google Scholar
  4. 4.
    Bezdek J.C., “Pattern Recognition with Fuzzy Objective Function Algorithms”, Plenum Press, New York, 1981MATHCrossRefGoogle Scholar
  5. 5.
    Bezdek J.C., Fuzzy Models - What Are They and Why? IEEE Trans. on Fuzzy Systems, Vol. 1, No. 1, pp. 1–5, 1993Google Scholar
  6. 6.
    Buchowicz A. and Pitas I., Multichannel Distance Filters,in: “Proceedings of ICIP’94 - IEEE Conference on Image Processing” (Austin, TX), pp. 575–578, 1994Google Scholar
  7. 7.
    Carron T. and Lambert P., Symbolic Fusion of Hue-Chroma-Intensity Features for Region Segmentation, in: “Proceedings of ICIP’96 - IEEE Conference on Image Processing” (Lausanne, Switzerland), pp. 971–974, 1996Google Scholar
  8. 8.
    Castleman K.R., “Digital Image Processing (2nd edition)”, Prentice Hall, Englewood Cliffs NJ, 1996Google Scholar
  9. 9.
    Ciuc M., Rangayyan R.M., Zaharia T. and Buzuloiu V., Adaptive Neighbourhood Filters for Color Image Filtering, in: “Proceedings of the 9th SPIE Nonlinear Image Processing Conference” (San Jose, California, USA), SPIE 3304, pp. 277–286, 1998Google Scholar
  10. 10.
    Cohen H.A., Image Restoration via N-Nearest Neighbor Classification,in: “Proceedings of ICIP’96 - IEEE Conference on Image Processing” (Lausanne, Switzerland), Vol. 1, pp. 1005–1008, 1996Google Scholar
  11. 11.
    Comaniciu D., An Efficient Clustering Algorithm for Vector Quantization,in: “Proceedings of the 9th Scandinavian Conference on Image Analysis” (Uppsala, Sweden), pp. 423–430, 1995Google Scholar
  12. 12.
    Economou G. and Fotopoulos S., A Family of Adaptive Nonlinear Lox Complexity Filters, in: “Proceedings of ECCTD’93 - European Conference on Circuit Theory and Design” (Davos, Switzerland), pp. 521–524, 1993Google Scholar
  13. 13.
    Fotopoulos S. and Economou G., Multichannel Filters Using Composite Distance Metrics, in: “Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing” (Neos Marmara, Halkidiki, Greece), Vol. 2, pp. 503–506, 1995Google Scholar
  14. 14.
    Gersho A. and Gray R.M., “Vector Quantization and Signal Compression”, Kluwer Academic Publ., Boston MA, 1992MATHCrossRefGoogle Scholar
  15. 15.
    Hathaway R.J. and Bezdek J.C., Optimization of Clustering Criteria by Reformulation,IEEE Trans. on Fuzzy Systems, Vol. 3, No. 2, pp. 241–245, 1995Google Scholar
  16. 16.
    Jain A.K. and Dubes R.C., “Algorithms for Clustering Data”, Prentice Hall, Englewood Cliffs NJ, 1988MATHGoogle Scholar
  17. 17.
    Karakos D.G. and Trahanias P.E., Generalized Multichannel Image Filtering Structures, IEEE Trans. on Image Processing, Vol. 6, No. 7, pp. 1038–1045, 1997Google Scholar
  18. 18.
    Krishnapuram R. and Keller J.M., A Possibilistic Approach to Clustering,IEEE Trans. on Fuzzy Systems, Vol. 1, No. 2, pp. 98–110, 1993Google Scholar
  19. 19.
    Krzanowski W.J., “Principles of Multivariate Analysis: A User’s Perspective”, Clarendon Press, Oxford, 1993Google Scholar
  20. 20.
    Pitas I. and Venetsanopoulos A.N., “Nonlinear Digital Filters - Principles and Applications”, Kluwer Academic Publ., Norwell MA, 1990MATHGoogle Scholar
  21. 21.
    Plataniotis K.N., Androutsos D. and Venetsanopoulos A.N., Color Image Processing using Fuzzy Vector Directional Filters, in: “Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing” (Neos Marmara, Halkidiki, Greece), Vol. 2, pp. 535–538, 1995Google Scholar
  22. 22.
    Plataniotis K.N., Androutsos D. and Venetsanopoulos A.N., Nearest Neighbour Multichannel Filters for Image Processing, in: “Proceedings of EUSIPCO’96–8th European Signal Processing Conference” (Trieste, Italy), Vol. 1, pp. 157–160, 1996Google Scholar
  23. 23.
    Plataniotis K.N., Androutsos D. and Venetsanopoulos A.N., Multichannel Filters for Image Processing, Signal Processing: Image Communications, Vol. 9, No. 2, pp. 143–158, 1997CrossRefGoogle Scholar
  24. 24.
    Plataniotis K.N. and Venetsanopoulos A.N., Vector Filtering,in: “The Colour Image Processing Handbook (Sangwine J.S. and Horne R.E.N., eds.)”, Chapman & Hall, pp. 188–209, 1998Google Scholar
  25. 25.
    Reusch B., Mathematics of Fuzzy Logic,in: “Real World Applications of Intelligent Technologies (Dascalu D., Negoita M.G. and Zimmermann H.J., eds.)”, Romanian Academy Publ. House, pp. 15–52, 1996Google Scholar
  26. 26.
    Russo F. and Ramponi G., A Fuzzy Operator for the Enhancement of Blurred and Noisy Images, IEEE Trans. on Image Processing, Vol. 4, No. 8, pp. 1169–1174, 1995Google Scholar
  27. 27.
    Russo F., Nonlinear Fuzzy Filters: An Overview,in: “Proceedings of EUSIPCO’96–8th European Signal Processing Conference” (Trieste, Italy), Vol. 1, pp. 257–260, 1996Google Scholar
  28. 28.
    Sangwine J.S. and Thornton A. L., Frequency Domain Methods, in: “The Colour Image Processing Handbook (Sangwine J.S. and Horne R.E.N., eds.)”, Chapman & Hall, pp. 228–241, 1998Google Scholar
  29. 29.
    Sharma G. and Trusell H.G., Digital Color Imaging,IEEE Trans. on Image Processing, Vol. 6, No. 7, pp. 901–932, 1997Google Scholar
  30. 30.
    Tang K., Astola J. and Neuvo Y., Nonlinear Multivariate Image Filtering Techniques, IEEE Trans. on Image Processing, Vol. 4, No. 6, pp. 788–798, 1995CrossRefGoogle Scholar
  31. 31.
    Trahanias P.E. and Venetsanopoulos A.N., Vector Directional Filters - A New Class of Multichannel Image Processing Filters, IEEE Trans. on Image Processing, Vol. 2, No. 4, pp. 528–534, 1993Google Scholar
  32. 32.
    Vertan C. and Geangâlâ C.I., Fuzzy Unsupervised Clustering for Color Image Filtering, in: “Proceedings of EUFIT’96–4th European Congress on Intelligent Techniques and Soft Computing” (Aachen, Germany), Vol. 3, pp. 1751–1753, 1996Google Scholar
  33. 33.
    Vertan C., Malciu M., Zaharia T. and Buzuloiu V., A Clustering Approach to Vector Mathematical Morphology, in: “Proceedings of ICECS’96–IEEE International Conference on Electronics, Circuits and Systems” (Rodos, Greece), Vol. 1, pp. 187–190, 1996Google Scholar
  34. 34.
    Vertan C. and Geangâlâ C.I., FMPNN - A New Fuzzy Unsupervised Clustering Algorithm, in: “Proceedings of EUFIT’96–4th European Congress on Intelligent Techniques and Soft Computing” (Aachen, Germany), Vol. 3, pp. 1812–1815, 1996Google Scholar
  35. 35.
    Vertan C., Vertan C.I. and Buzuloiu V., Fuzzy Developments of Multichannel Filters, in: “Proceedings of KES’97 - First International Conference on Conventional and Knowledge-Based Intelligent Electronic Systems” ( Adelaide, Australia ), 1997Google Scholar
  36. 36.
    Vertan C., Grava C. and Buzuloiu V., Cluster Filtering Revisited: Probabilistic and Possibilistic Approaches to Multichannel Signal Processing, in: “Proceedings of EMES’97–4th International Conference on Engineering of Modern Electrical Systems” (Oradea, Romania), pp. 276–281, 1997Google Scholar
  37. 37.
    Yang X. and Toh P.S., Adaptive Fuzzy Multilevel Median Filter,IEEE Trans. on Image Processing, Vol. 4, No. 8, pp. 680–682, 1995Google Scholar
  38. 38.
    Zadeh L., Fuzzy Sets,Information and Control, Vol. 8, pp. 338–353, 1965Google Scholar
  39. 39.
    Zimmermann H.J., “Fuzzy Sets, Decision Making and Expert Systems”, Kluwer Academic Publ., Boston MA, 1987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Constantin Vertan
    • 1
  • Vasile Buzuloiu
    • 2
  1. 1.Image Processing and Analysis Laboratory (LAPI)Universitatea Politehnica BucureştiBucharest 35Romania
  2. 2.Image Processing and Analysis Laboratory (LAPI)Universitatea Politehnica BucureştiBucharest 61Romania

Personalised recommendations