Fuzzy Image Enhancement: An Overview

  • Hamid R. Tizhoosh
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 52)


Image enhancement is one of the fundamental tasks in image processing. Fuzzy techniques offer a suitable framework for the development of new methods because they are nonlinear and knowledge-based. In this work, we give an overview of existing fuzzy image enhancement techniques, where contrast adaptation methods and filtering techniques are considered.


Membership Function Gray Level Fuzzy Rule Image Enhancement Fuzzy Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks S., “Signal Processing, Image Processing and Pattern Recognition”, Prentice Hall, Great Britain, 1990Google Scholar
  2. 2.
    Bhandari D., Pal S.K. and Kundu M.K., Image enhancement incorporating fuzzy fitness function in genetic algorithms, in: “Proceedings of FUZZIEEE’93”, Vol. 2, pp. 1408–1413, 1993Google Scholar
  3. 3.
    Bhutani K.R. and Battou A., An application of fuzzy relations to image enhancement,Pattern Recognition Letters, Vol. 16, pp. 901–909, 1995Google Scholar
  4. 4.
    Bouchon-Meunier B., “Aggregation and Fusion of Imperfect Information”, Physica-Verlag, Heidelberg, New York, 1998Google Scholar
  5. 5.
    Cardarilli G.C., Marco Re, Lojacono R., D’Lena M. and Scrimaglio R., A VLSI Architecture for High-Speed Fuzzy Image Processing, in: “Proceedings of EUFIT’98”, pp. 1350–13554, 1998Google Scholar
  6. 6.
    Chen B.-T., Chen Y.-S. and Hsu W.-H., Automatic histogram specification based on fuzzy set operations for image enhancement, IEEE Signal Processing Letters, Vol. 2, No. 2, pp. 37–40, 1995CrossRefGoogle Scholar
  7. 7.
    Chen B.-T., Chen Y.-S. and Hsu W.-H., Image processing understanding based on fuzzy inference approach, in: “Proceedings of FUZZ-IEEE’94”, Vol. 1, pp. 254–259, 1994Google Scholar
  8. 8.
    Choi Y.S. and Krishnapuram R., A robust Approach to Image Enhancement Based on Fuzzy Logic, IEEE Trans. Image Processing, Vol. 6, No. 6, pp. 808825,1997Google Scholar
  9. 9.
    De T.K. and Chatterji B.N., An approach to a generalized technique for image contrast enhancement using the concept of fuzzy set, Fuzzy Sets and Systems, Vol. 25, pp.145–158, 1998Google Scholar
  10. 10.
    De Luca A. and Termini S., A definition of a nonprobabilistic entropy in the setting of fuzzy set theory, Information and Control, Vol. 20, pp. 301–312, 1972Google Scholar
  11. 11.
    Fang N. and Cheng M.-C, An automatic crossover point selection technique for image enhancement using fuzzy sets,Pattern Recognition Letters, Vol. 14, pp. 397–406, 1993Google Scholar
  12. 12.
    Frei W., Image Enhancement by Histogram Hyperbolization,CGIP, Vol. 6, No. 3, pp. 286–294, 1977Google Scholar
  13. 13.
    Friedman M., Schneider M. and Kandel A., The use of weighted fuzzy expected value (WFEV) in fuzzy expert systems, Fuzzy Sets and Systems, Vol. 31, pp. 37–45, 1989MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Haralick R.M. and Shapiro L.G., “Computer and Robot Vision, Volume 1”, Addison Wesley, 1992Google Scholar
  15. 15.
    Jähne B., “Digital Image Processing”, Springer, Heidelberg, 1995MATHGoogle Scholar
  16. 16.
    Kaufmann A., “Introduction to the Theory of Fuzzy Subsets - Fundamental Theoretical Elements”, Vol. 1, Academic Press, New York, 1975Google Scholar
  17. 17.
    Law T., Itoh H. and Seki H., Image Filtering, Edge Detection, and Edge Tracing Using Fuzzy Reasoning, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 18, No. 5, pp. 481–491, 1996CrossRefGoogle Scholar
  18. 18.
    Lee C.-S., Kuo Y.-H. and Yu P.-T., Weighted fuzzy mean filters for image processing, Fuzzy Sets and Systems, Vol. 89, pp. 157–180, 1997CrossRefGoogle Scholar
  19. 19.
    Lee C.-S. and Kuo Y.-H., Adaptive weighted fuzzy mean filter,in: “Proceedings of FUZZ-IEEE’96”, USA, pp. 2110 — 2116, 1996Google Scholar
  20. 20.
    Lee C.-S. and Kuo Y.-H., The Important Properties and Applications of the Adaptive Weighted Fuzzy Mean Filter, Int. Journal of Intelligent Systems, Vol. 14, pp. 253–274, 1999Google Scholar
  21. 21.
    Li H. and Yang H.S., Fast and reliable image enhancement using fuzzy relaxation technique, IEEE Trans. Syst. Man and Cybern., Vol. 19, No. 5, pp. 1276–1281, 1989Google Scholar
  22. 22.
    Mancuso M., Poluzzi R. and Rizzotto G.G., A fuzzy filter for dynamic range reduction and contrast enhancement, in: “Proceedings of FUZZ-IEEE’94”, Vol. 1, pp. 264–267, 1994Google Scholar
  23. 23.
    Mari M. and Dellepiane S., A non-linear image processing approach through fuzzy measures, Pattern Recognition Letters, Vol. 18, pp. 1109–1115, 1997Google Scholar
  24. 24.
    Ooki S. and Shono K., Image processing employing fuzzy inference,in: “Proceedings of the 3rd Int. Conf. Fuzzy Logic and Soft Computing” (Iizuka), pp. 395–397, 1994Google Scholar
  25. 25.
    Pal S.K., Bhandari D. and Kundu M.K., Genetic algorithms for optimal image enhancement, Pattern Recognition Letters, Vol. 15, pp. 261–271, 1994MATHCrossRefGoogle Scholar
  26. 26.
    Pal S.K. and King R.A., Image enhancement using smoothing with fuzzy sets, IEEE Trans. Syst. Man and Cybern., Vol. 11, No. 7, pp. 494–501, 1981Google Scholar
  27. 27.
    Pal S.K. and Rosenfeld A., Image enhancement and thresholding by optimization of fuzzy compactness, Pattern Recognition Letters, Vol. 7, pp. 77–86, 1988Google Scholar
  28. 28.
    Pal S.K. and Kundu M.K., Automatic selection of object enhancement operator with quantitative justification based on fuzzy set theoretic measures, Pattern Recognition Letters, Vol. 11, pp. 811–829, 1990Google Scholar
  29. 29.
    Pal S.K. and Dutta Majumder D., “Fuzzy Mathematical Approach to Pattern Recognition”, John Wiley Sons, New York, 1986MATHGoogle Scholar
  30. 30.
    Pal N.R. and Bezdek J.C., Measures of Fuzziness: A Review and several New Classes, in: “Fuzzy Sets, Neural Networks, and Soft Computing (Yager R.R. and Zadeh L.A., eds.)”, Van Nostrand Reinhold, New York, pp. 194–212, 1994Google Scholar
  31. 31.
    Peng S. and Lucke L., Fuzzy Filtering for Mixed Noise Removal During Image Processing, in: “Proceedings of FUZZ-IEEE’94”, Vol. 1, pp. 89–93, 1994Google Scholar
  32. 32.
    Pitas I. and Venetsanopoulos A.N., Nonlinear mean filters in image processing, IEEE Trans. ASSP, Vol. 34, No. 3, pp. 573–584, 1986Google Scholar
  33. 33.
    Pizer S., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T., Romeny B.H., Zimmerman B. and Zuiderveld K., Adaptive histogram equalization and its variations, Computer Vision, Graphics and Image Processing, Vol. 39, pp. 355–368, 1987CrossRefGoogle Scholar
  34. 34.
    Russo F. and Ramponi G., Combined FIRE Filter for Image Enhancement,in: “Proceedings of FUZZ-IEEE’94”, Vol. 1, pp. 260–264, 1994Google Scholar
  35. 35.
    Russo F., FIRE operators for image processing,Fuzzy Sets and Systems, Vol. 103, pp. 265–275, 1999Google Scholar
  36. 36.
    Russo F. and Ramponi G., A fuzzy filter for images corrupted by impulse noise, IEEE Signal Processing Letters, Vol. 3, No. 6, pp. 168–170, 1996Google Scholar
  37. 37.
    Rousseeuw P.J. and Leroy A.M., “Robust Regression and Outlier Detection”, Wiley, New York, 1987MATHCrossRefGoogle Scholar
  38. 38.
    Schneider M. and Craig M., On the use of fuzzy sets in histogram equalization, Fuzzy Sets and Systems, Vol. 45, pp. 271–278, 1992Google Scholar
  39. 39.
    Shafer G., “A Mathematical Theory of Evidence”, Princeton University Press, New Jersey, 1976MATHGoogle Scholar
  40. 40.
    Sugeno M., “Theory of Fuzzy Integrals and Its Applications”, Dissertation, Tokyo Institute of Technology, Japan, 1974Google Scholar
  41. 41.
    Taguchi A., A design method of fuzzy weighted median filters, in: “Proceedings of ICIP’96”, pp. 423–426, 1996Google Scholar
  42. 42.
    Taguchi A. and Takaku S., Fuzzy weighted median filters, in: “Proceedings of IEEE Workshop on Nonlinear Signal and Image Processing” ( Michigan, USA ), 1997Google Scholar
  43. 43.
    Tizhoosh H.R., Krell G. and Michaelis B., Locally Adaptive Fuzzy Image Enhancement, in: “Computational Intelligence, Theory and Applications; Proceedings of 5th Fuzzy Days’97 (B. Reusch, ed.)” (Dortmund, Germany), Springer, pp. 272–276, 1997Google Scholar
  44. 44.
    Tizhoosh H.R., Krell G. and Michaelis B., On Fuzzy Image Enhancement of Megavoltage Images in Radiation Therapy, in: “Proceedings of FUZZ-IEEE’97” (Barcelona), pp. 1399–1404, 1997Google Scholar
  45. 45.
    Tizhoosh H.R., Krell G. and Michaelis B., A-Enhancement: Contrast adaptation based on Optimization of Image Fuzziness, in: “Proceedings of FUZZ-IEEE’98”, pp. 1548–1553, 1998Google Scholar
  46. 46.
    Tizhoosh H. R., “Fuzzy Image Processing” (in German), Springer, Heidelberg, 1997Google Scholar
  47. 47.
    Tizhoosh H.R. and Haußecker H., Fuzzy Image Processing: An Overview,in: “Handbook on Computer Vision and Applications, Vol. 2 (Jähne B., Haußecker H. and Geißler P., eds.)”, Academic Press, Boston, pp. 683–727, 1999Google Scholar
  48. 48.
    Tizhoosh H.R., Krell G., Lilienblum T., Moore C.J. and Michaelis B., Enhancement and Associative Restoration of Electronic Portal Images in Radiotherapy, International Journal of Medical Informatics, Vol. 49/2, Elsevier Science Ireland, pp. 157–171, 1998Google Scholar
  49. 49.
    Tizhoosh H.R., An Universal Filter Based on Soft Computing Techniques, in: “Proceedings of NN’99 — 4th Int. Workshop Neural Networks in Applications” (Magdeburg, Germany), pp. 219–224, 1999Google Scholar
  50. 50.
    Tizhoosh H.R., Krell G., Michaelis B., Enhancement of Megavoltage Images in Radiation Therapy Using Fuzzy and Neural Image Processing Techniques, in: “Fuzzy Systems in Medicine (P.S. Szczepaniak, P.J.G. Lisboa and S. Tsumoto, eds.)”, Studies in Fuzziness and Soft Computing, Physica-Verlag, 1999Google Scholar
  51. 51.
    Tizhoosh H.R., Michaelis B., Improvement of Image Quality Based on Subjective Evaluation and Fuzzy Aggregation techniques, in: “Proceedings of EUFIT’98” (Aachen, Germany), Vol. 2, pp. 1325–1329, 1998Google Scholar
  52. 52.
    Tizhoosh H.R., Michaelis B., Image Enhancement Based on Fuzzy Aggregation Techniques, in: “Proceedings of IMTC’99” (Venice, Italy), Vol. 3, pp. 18131817, 1999Google Scholar
  53. 53.
    Tyan C.-Y. and Wang P.P., Image Processing - Enhancement, Filtering and Edge Detection Using Fuzzy Logic Approach, in: “Proceedings of FUZZIEEE’93”, pp. 600–605, 1993Google Scholar
  54. 54.
    Wang Z., Klir G.J., “Fuzzy Measure Theory”, Plenum Press, New York, 1992MATHGoogle Scholar
  55. 55.
    Weeks A.R., “Fundamentals of Electronic Image Processing”, SPIE Optical Engineering Press, IEEE Press, USA, 1996CrossRefGoogle Scholar
  56. 56.
    Zadeh L.A., Fuzzy sets,Information and Control, Vol. 8, pp. 338–353, 1965Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Hamid R. Tizhoosh
    • 1
  1. 1.Department for Technical Computer ScienceUniversity of MagdeburgMagdeburgGermany

Personalised recommendations