Fuzzy Techniques in Mammographic Image Processing

  • Andreas Rick
  • Sylvie Bothorel
  • Bernadette Bouchon-Meunier
  • Serge Muller
  • Maria Rifqi
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 52)


In this chapter we discuss fuzzy techniques for the detection and analysis of potential breast cancer lesions on mammograms. We show how fuzzy measurements can be performed on the images and how this information can be used in the different stages of the processing.


Membership Function Fuzzy Measurement Extension Principle Mammographic Image Scout View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aylward S.R., Hemminger B.M. and Pisano E.D., Mixture Modeling for Digital Mammogram Display and Analysis, in: “Digital Mammography (Karssemeijer N., Thijssen M., Hendriks J. and van Erning L., eds.)”, Kluwer Academic Publishers, Nijmegen, pp. 305–312, 1998Google Scholar
  2. 2.
    Bothorel S., “Analyse d’image par arbre de décision floue - Application à la classification sémiologique des amas de microcalcifications en mammographie numérique”,Thèse de l’université Paris 6, 1996Google Scholar
  3. 3.
    Bothorel S., Bouchon B. and Muller S., A Fuzzy Logic-based Approach for Semiological Analysis of Microcalcification in Mammographie Images, International Journal of Intelligent Systems, Vol. 12, pp. 819–843, 1997CrossRefGoogle Scholar
  4. 4.
    Bouchon-Meunier B., Rifqi M. and Bothorel S., Towards general measures of comparison of objects, Fuzzy Sets and Systems, Vol. 84, No. 2, pp. 143–153, 1996MathSciNetMATHGoogle Scholar
  5. 5.
    Bouchon-Meunier B. and Valverde L., Analogy relations and inference,in: “Proceedings of FUZZ-IEEE’93 - IEEE International Conference on Fuzzy Systems” (San Fransisco), pp. 1140–1144, 1993Google Scholar
  6. 6.
    Bouchon-Meunier B., Fuzzy similitude and approximate reasoning,in: “Advances in Fuzzy Theory and Technology (P.P. Wang, ed.)”, Bookwrights Press, pp. 161–166, 1993Google Scholar
  7. 7.
    De Luca A. and Termini S., A definition of a non-probability entropy in the setting of fuzzy sets theory,Information and Control, Vol. 20, pp. 301–312, 1972Google Scholar
  8. 8.
    Demster M., Laird N.M. and Jain D.B., Maximum likelihood for incomplete data via the EM algorithm, J. Royal Statistics Society, Series B, Vol. 39, pp 1–38, 1977Google Scholar
  9. 9.
    Dhawan A.P., Chitre Y., Kaiser-Bonasso C. and Moskowitz M., Analysis of mammographie Microcalcifications Using Gray-Level Image Structure Features, IEEE Transactions on Medical Imaging, Vol. 15, No. 3, pp. 246–259, 1996CrossRefGoogle Scholar
  10. 10.
    Dubois D. and Prade H., “Fuzzy Sets and Systems, Theory and Applications”, Academic Press, New York, 1980MATHGoogle Scholar
  11. 11.
    Erna T., Doi K., Nichikawa R.M., Jiang Y. and Papaioannou J., Image feature analysis and computer-aided diagnosis in mammography: Reduction of false-positive clustered microcalcifications using local-gradient analysis, Medical Physics, Vol. 22, No. 2, pp. 161–169, 1995CrossRefGoogle Scholar
  12. 12.
    Grimaud M., “La géodesie numérique en morphologie mathématique - Application a la détéction automatique de microcalcifications en mammographie numérique”,Thèse de doctorat à l’Ecole Nationale Supérieure des Mines de Paris, 1991Google Scholar
  13. 13.
    Gupta R. and Undrill P.E., The use of texture analysis to delineate suspicious masses in mammography, Phys. Med. Biol., Vol. 40, pp. 835–855, 1995CrossRefGoogle Scholar
  14. 14.
    Highnam R., Brady M. and Shepstone B., A representation for mammographic image processing, Medical Image Analysis, Vol. 1, No. 1, pp. 1–18, 1996CrossRefGoogle Scholar
  15. 15.
    Karssmeijer N. and te Brake G.M., Detection of Stellate Distortions in Mammograms,IEEE Transactions on Medical Imaging, Vol. 15, No. 5, pp. 611–619, 1996Google Scholar
  16. 16.
    Karssemeijer N., Thijssen M., Hendriks J. and van Erning L., “Digital Mammography”, Kluwer Academic Publishers, Nijmegen, 1998MATHCrossRefGoogle Scholar
  17. 17.
    Lanyi M., “Diagnosis and Differential Diagnosis of Breast Calcifications”, Springer Verlag, 1986Google Scholar
  18. 18.
    Marsala C., “Apprentissage inductif en présence de données imprécises: construction et utilisation d’abres de décision flous”,Thèse de l’informatique, Université Paris 6, 1998Google Scholar
  19. 19.
    Ovchinnikov S.V., Representations of transitive fuzzy relations,in: “Aspects of Vagueness (Skala H.J., Termini S. and Trillas E., eds.)”, D. Reidel Publishing Company, pp. 105–118, 1984Google Scholar
  20. 20.
    Quinlan, Induction of decision trees,Machine Learning, Vol. 1 No. 1, pp. 86106, 1986Google Scholar
  21. 21.
    Rifqi M., “Mesures de comparaison, typicalité et classification d’objets flous: théorie et pratique”,Thèse de doctorat de l’informatique, Université Paris 6, 1996Google Scholar
  22. 22.
    Rifqi M., Bothorel S., Bouchon-Meunier B. and Muller S., Similarity and prototype based approach for classification of microcalcifications, in: “Proceedings of the 7th IFSA World Congress” (Prague), pp. 123–128, 1997Google Scholar
  23. 23.
    Rosch E., “Principles of categorization, Cognition and categorization”, Hillsdale, N. J.: Laurence Erlbaum Associates, 1978Google Scholar
  24. 24.
    Rosch E. and Mervis C.B., Family resemblances: Studies in the internal structure of categories, Cognitive Psychology, Vol. 7, pp. 573–605, 1975CrossRefGoogle Scholar
  25. 25.
    Sanchez E., Inverses of fuzzy relations–Applications to possibility distributions and medical diagnosis, Fuzzy Sets and Systems, Vol. 2, pp. 75–86, 1979MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Shiina K., A fuzzy-set-theoretic feature model and its application to asymmetric data analysis, Japanese psychological research, Vol. 30, pp. 95–104, 1988Google Scholar
  27. 27.
    Trillas E. and Valverde L., On implication and indistinguishability in the setting of fuzzy logic, in: “Management Decision Support Systems Using Fuzzy Sets and Possibility Theory (Kacprzyk J. and Yager R.R., eds.)”, Verlag TUV, Rheinland, 1984Google Scholar
  28. 28.
    Tversky A., Features of similarity,Psychological Review, Vol. 84, pp. 327–352, 1977Google Scholar
  29. 29.
    Valverde L., On the structure of t-indistinguishability operators, Fuzzy Sets and Systems, Vol. 17, pp. 313–328, 1985MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Zadeh L.A., A note on prototype theory and fuzzy sets,Cognition, Vol. 12, pp. 291–297, 1982Google Scholar
  31. 31.
    Zhuang X., Huang Y., Palaniappan K. and Zhao Y., Gaussian Mixture Density Modeling, Decomposition, and Applications, IEEE Transactions on Image Processing, Vol. 5, No. 9, pp. 1293–1302, 1996CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Andreas Rick
    • 1
    • 2
  • Sylvie Bothorel
    • 2
  • Bernadette Bouchon-Meunier
    • 1
  • Serge Muller
    • 2
  • Maria Rifqi
    • 1
  1. 1.Université Pierre et Marie CurieParis CEDEX 05France
  2. 2.General Electric Medical SystemsBucFrance

Personalised recommendations