An Implementation for Fuzzy Deductive Relational Databases

  • Ignacio Blanco
  • Juan C. Cubero
  • Olga Pons
  • Amparo Vila
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 53)


This chapter shows how to integrate the representation of deductive rules and fuzzy information stored in a relational DBMS to build a module that can obtain new data from data stored in tables. The deductions can be applied to classical (or precise) data, imprecise data or both of them, so it is necessary to provide a mechanism to find the tuples in the database satisfying a rule, i.e. a mechanism to calculate the precision degree of the answer by means of the combination of the precision degrees of every value into an unified measure. Keywords, relational databases extension, fuzzy deduction, inference.


Logical Rule Possibility Distribution Linguistic Label Extensional Table Underlying Domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 1970.Google Scholar
  2. 2.
    P. Bosc, M. Galibourg, and G. Hamon. Fuzzy querying with sql: Extensions and implementation aspects. Fuzzy Sets and Systems, 28:333–349, 1988.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    B. P. Buckles and F. E. Petry. A fuzzy representation of data for relational databases. Fuzzy Sets and Systems, (7):213–226, 1982.MATHCrossRefGoogle Scholar
  4. 4.
    H. Prade and C. Testemale. Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries. Information Sciences, (34):113–143, 1984.MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. A. Vila, J. C. Cubero, J. M. Medina, and O. Pons. Logic and fuzzy relational databases: A new language and a new definition. In P. Bosc and J. Kacprzyk, editors, In Fuzzy Sets and Possibility Theory in Databases Management Systems. Physica-Verlag, 1995.Google Scholar
  6. 6.
    M. Zemankova and A. Kandel. Fuzzy Relational Databases — A Key to Expert Systems. Verlag TUV Rheinland, 1984.Google Scholar
  7. 7.
    J.M. Medina, O. Pons, and M.A. Vila. Gefred. a generalized model of fuzzy relational databases. Information Sciences, 1994.Google Scholar
  8. 8.
    J.M. Medina, O. Pons, J.C. Cubero, and M.A. Vila. Freddi: A fuzzy relational deductive database interface. International Journal of Intelligent Systems, 12:597–613, 1997.CrossRefGoogle Scholar
  9. 9.
    L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning. Information Sei., 8, 9:(8) 199–2481975,MathSciNetMATHCrossRefGoogle Scholar
  10. 9a.
    L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning. Information Sei., 8, 9, 301–357. 1975MathSciNetMATHCrossRefGoogle Scholar
  11. 9b.
    L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning. Information Sei., 8, (9) 43–80, 1975.CrossRefGoogle Scholar
  12. 10.
    J. Grant. Incomplete information in a relational database. Fundamenta Informative, 3:363–378, 1980.MathSciNetMATHGoogle Scholar
  13. 11.
    E. F. Codd. Extending the database relational model to capture more meaning. ACM Transactions on Database Systems, 4:262–296, 1979.CrossRefGoogle Scholar
  14. 12.
    E. F. Codd. Missing information (applicable and inapplicable) in relational databases. ACM SIGMOD Record, 15(4), 1986.CrossRefGoogle Scholar
  15. 13.
    E. F. Codd. The twelve rules for relational dbms. Technical Report EFC-6, San Jose, The Relational Institute, 1986.Google Scholar
  16. 14.
    E. F. Codd. More commentary on missing information in relational databases. ACM SIGMOD Record, 16(1), 1987.CrossRefGoogle Scholar
  17. 15.
    J. Galindo. Tratamiento de la Imprecisión en Bases de Datos Relationales: Extensión del modelo y adaptatión de los SGBD actuales. PhD thesis, Department of Computer Science and Artificial Intelligence, University of Granada, SPAIN, 1999.Google Scholar
  18. 16.
    O. Pons, J. M. Medina, J. C. Cubero, and A. Vila. Foundations of Intelligent Systems, chapter An Architecture for a Deductive Fuzzy Relational Database. Sringer, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ignacio Blanco
    • 1
  • Juan C. Cubero
    • 1
  • Olga Pons
    • 1
  • Amparo Vila
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations