Knowledge Representation Using Fuzzy Logic Based Characteristics

  • Nasredin Chaker
  • Rainer Hampel
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 6)


Rule based systems for Fuzzy Control, Fuzzy Supervising and Fuzzy Diagnosis are non-linear multi-input, multi-output systems. The result of the signal processing within the system is a high dimensional characteristic field. For optimizing the behaviour of the system, we have a large number of degrees of freedom. The reconstruction of the knowledge base from the characteristic field as starting point is impossible. With this background, the paper describes the quality of a two dimensional Fuzzy Controller characteristic field in connection with the necessary deformation for the compensation of non-linear effects. We will demonstrate that one should define two restrictions for the characteristic field: continuity without local extrema and differentiability. Under such conditions we need only two free degrees for optimizing the Controller behaviour using the characteristic field deformation. With help of this experience, the high dimensional Controller will be cascaded. A subjective decision for it is to distinguish the type of the input variables in dominant, non-dominant, and optimization variables. The quality of the cascade is depending on the final characteristic field and the completeness of the rule base. An example will demonstrate the effects of cascading. The cascading concept is realized in the so called High Speed Matrix Controller (HSMC), whose structure is described in this paper, as well.


Fuzzy Logic Fuzzy Control Fuzzy Controller Fuzzy Logic Controller Characteristic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuccera, T.: Hierarchical Fuzzy Controllers (Conventional PID Controller and Fuzzy Logic Controllers FLC). In: Proc. Conference on Fuzzy Logic in Engineering and Natural Sciences, Zittau, Germany (1996) 80–82Google Scholar
  2. 2.
    Hampel, R., Chaker, N.: Structure Analysis for Fuzzy-Controller. In: Proc. Conference on Fuzzy Logic in Engineering and Natural Sciences, Zittau, Germany (1996) 83–90Google Scholar
  3. 3.
    Steinkogler, A., Koch, J.: Genetic Programming Designs Hierarchie Fuzzy Logic Controller. In: Proc. Conference on Fuzzy Logic in Engineering and Natural Sciences, Zittau, Germany (1996) 150–159Google Scholar
  4. 4.
    Pivonka, P., Breijl, M.: Use of PID Controllers in Fuzzy Control of coal power plants. In: Proc. Conference on Fuzzy Logic in Engineering and Natural Sciences, Zittau, Germany (1996) 441–448Google Scholar
  5. 5.
    Czogala, E., Leski, J.: On Destructive Fuzzy Logic Controllers. In: Proc. 5’ Zittau Fuzzy-Colloquium, Zittau, Germany (1997) 8–12Google Scholar
  6. 6.
    Hampel, R., Chaker, N.: Cascading of Multi-Dimensional Fuzzy Controllers. In: Proc. 5’h Zittau Fuzzy-Colloquium, Zittau, Germany (1997) 17–31Google Scholar
  7. 7.
    Vogrin, P., Halang, W. A.: Approximation of Conventional Controllers by Fuzzy Controllers with Equal Discribing Functions. In: Proc. 5“ Zittau Fuzzy-Colloquium, Zittau, Germany (1997) 51–65Google Scholar
  8. 8.
    Czogala, E., Henzel, N., Leski, J.: The Equality of Inference Results Using Fuzzy Implication and Conjunctive Interpretations of the IF-THEN Rules under Defuzzification. In: Proc. 6h Zittau Fuzzy-Colloquium, Zittau, Germany (1998) 1–6Google Scholar
  9. 9.
    Halang, W. A., Colnaric, M., Vogrin, P.: Safety Licensable Inference Controller. In: Proc. 6h Zittau Fuzzy-Colloquium, Zittau, Germany (1998) 18–23Google Scholar
  10. 10.
    Wagenknecht, M., Chaker, N.: Towards an Algorithmic Cascading of Fuzzy Rules. In: Proc. 6ih Zittau Fuzzy-Colloquium, Zittau, Germany (1998) 56–61Google Scholar
  11. 11.
    Pivonka, P., Sidlo, M.: Fuzzy PI + PD Controller with a Normalised Universe-The Exact Solution for Setting of Parameters. In: Proc. 6’h Zittau Fuzzy-Colloquium, Zittau, Germany (1998) 62–67Google Scholar
  12. 12.
    Arakeljan, E., Panko, M., Usenko, V.: Comperative Analysis of Classical and Fuzzy PID Algorithms. In: Proc. 6h Zittau Fuzzy-Colloquium, Zittau, Germany (1998) 68–73Google Scholar
  13. 13.
    Pacyna, K., Pieczynski, A.: Influence of Changes of Membership Function on PID Fuzzy Logic Control. In: Proc. 6h Zittau Fuzzy-Colloquium, Zittau, Germany (1998) 80–85Google Scholar
  14. 14.
    Rotach, V.: On Connection Between Traditional and Fuzzy PID Regulators. In: Proc. 6h Zittau Fuzzy-Colloquium, Zittau, Germany (1998) 86–90Google Scholar
  15. 15.
    Hampel, R., Keil, A., Gierth, L.: Fuzzy Drehzahlregelung. atp 3 (1999) 37–42Google Scholar
  16. 16.
    Hampel, R., Chaker, N.: Minimizing the number of variable parameters for optimizing the Fuzzy Controller. Fuzzy Sets and Systems 100 (1998) 131–142CrossRefGoogle Scholar
  17. 17.
    Hampel, R., Chaker, N., Gierth, L.: Adaptive Dampfturbinenregelung mit Fuzzy Logik zur Beherrschung von Lastabwürfen in Heizkraftwerken. atp 2 (1998) 42–49Google Scholar
  18. 18.
    Hampel, R., Chaker, N.: Application of Fuzzy Logic in Control and Limitation Systems Using Industrial Hardware. In: Proc. Mendel 97, Brno (1997) 291–298Google Scholar
  19. 19.
    Traichel, A., Kästner, W., Hampel, R.: Fuzzy Modeling of Dynamic Non-Linear Processes-Applied for Water Level Measurement. In: Proc. 7’h Zittau Fuzzy Colloquium, Zittau, Germany (1999) 119–134Google Scholar
  20. 20.
    Pieczynski, A., Kästner, W., Hampel, R.: Fuzzy Modeling of Multidimensional Non-Linear Processes-Design and Analysis of Structures. In: Proc. 7th Zittau Fuzzy Colloquium, Zittau, Germany (1999) 85–101Google Scholar
  21. 21.
    Hampel, R., Chaker, N., Stegemann, H.: High Speed Matrix Controller for Safety Related Applications. In: Proc. Mendel 99, Brno (1999) 243–248Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Nasredin Chaker
    • 1
  • Rainer Hampel
    • 1
  1. 1.Institute of Process Technique, Process Automation and Measuring Technique (IPM)University of Applied Sciences Zittau/GörlitzZittauGermany

Personalised recommendations