Fuzzy Control pp 318-328 | Cite as

Fuzzy Stochastic Multistage Decision Process with Implicitly Given Termination Time

  • Klaus Weber
  • Zhaohao Sun
Part of the Advances in Soft Computing book series (AINSC, volume 6)


One of the most important goals in marketing is to realize the highest profit by applying appropriate means to optimize the process of acquiring customers. In order to assist the marketer in making marketing decision, this paper introduces a stochastic dynamic programming model for the process of acquiring customers. It is actually a stochastic multistage decision process, whose state space consists of granularized information on customers and whose transitions are controlled by marketing actions. Then it shows how to control this process using fuzzy constraints and how to characterize the goal of maximizing profit by a fuzzy set. After an introduction to dynamic programming under fuzziness this paper further presents a new model of fuzzy dynamic programming to solve the decision problem for a stochastic system with implicitly given termination time.


Membership Function Optimal Policy Stochastic System Fuzzy Decision Fuzzy Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton, NJ (1957)MATHGoogle Scholar
  2. 2.
    Bellman, R.E., Kalaba, R.: Dynamic Programming and Modern Control Theory. Academic Press, New York, London (1965)Google Scholar
  3. 3.
    Bellman, R.E., Zadeh, L.A.: Decision-Making in a Fuzzy Environment. Management Science 17 (1970) B-141 - B-164Google Scholar
  4. 4.
    Berry, M.J.A., Linoff, G.: Data Mining Techniques for Marketing, Sales, and Customer Support. Wiley, New York et al. (1997)Google Scholar
  5. 5.
    Esogbue, A.O., Fedrizzi, M., Kacprzyk, J.: Fuzzy Dynamic Programming With Stochastic Systems. In: Kacprzyk, J., Fedrizzi, M. (Eds.): Combining Fuzzy Imprecision with Probabilistic Uncertainty. Lecture Notes in Economics and Mathematical Systems. Vol. 310, Springer, Berlin et al. (1988)Google Scholar
  6. 6.
    Finnie, G., Sun, Z., Weber, K.: A Multiagent-based Intelligent Broker Architecture for Bargaining Processes. Proceedings of the Australian Workshop on AI in Electronic Commerce, December 6, 1999, Sydney (1999) 47 - 56Google Scholar
  7. 7.
    Heuser, H.: Funktionalanalysis. 2, neubearb. Aufl., B. G. Teubner, Stuttgart (1986)MATHGoogle Scholar
  8. 8.
    Kacprzyk, J.: Multistage Decision-Making Under Fuzziness. Verlag TÜV Rheinland, Köln (1983)MATHGoogle Scholar
  9. 9.
    Kacprzyk, J., Esogbue, A.O.: Fuzzy Dynamic Programming: Main Developments and Applications. Fuzzy Sets and Systems 81 (1996) 31 - 45MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Klingsporn, B.: Teilmärkte bilden: Yuppie oder Skippie - wer ist ihr Kunde? Bank Magazin (1996) No. 7, 34 - 42Google Scholar
  11. 11.
    Kulisch, U.W., Miranker, W.L.: Computer Arithmetic in Theory and Practice. Academic Press, New York et al. (1981)Google Scholar
  12. 12.
    Küspert, A.: Bildung und Bewertung strategischer Geschäftsfelder. Die Bank (1991) No. 8, 425 - 434Google Scholar
  13. 13.
    Küspert, A.: Kundengruppenbildung im Privatkundengeschäft von Kreditinstituten - eine Fallstudie. Zeitschrift für Bankrecht und Bankwirtschaft (1992) No. 3, 184 - 201Google Scholar
  14. 14.
    Link, J., Hildebrand, V.: Database Marketing and Computer Aided Selling. Verlag Franz Vahlen, München (1993)Google Scholar
  15. 15.
    Viertl, R.: Einführung in die Stochastik. Springer-Verlag, Wien, New York (1990)Google Scholar
  16. 16.
    Weber, K., Sun, Z.: Fuzzy Stochastic Dynamic Programming for Process of Acquiring Customers. Proceedings of the 7th Zittau Fuzzy Colloquium, Sept. 8-10, 1999, Zittau, Germany (1999) 224 - 233Google Scholar
  17. 17.
    Weber, K., Sun, Z.: Fuzzy Stochastic Dynamic Programming for Marketing Decision Support. Submitted to International Journal of Intelligent Systems (1999)Google Scholar
  18. 18.
    Weber, K.: Database Marketing mit unscharfen Verfahren. Unpublished (2000)Google Scholar
  19. 19.
    Zadeh, L.A., Eaton, J.H.: An Alternation Principle for Optimal Control. Automation and Remote Control 24 (1963) 305 - 306MathSciNetMATHGoogle Scholar
  20. 20.
    Zadeh, L.A.: Some Reflections on Soft Computing, Granular Computing and their Roles in the Conception, Design and Utilization of Information/Intelligent Systems. Soft Computing 2 (1998) 23 - 25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Klaus Weber
    • 1
  • Zhaohao Sun
    • 2
  1. 1.Lufthansa Systems Berlin GmbHBerlinGermany
  2. 2.School of Information TechnologyBond UniversityGold CoastAustralia

Personalised recommendations