Advertisement

Rough Mereology in Information Systems. A Case Study: Qualitative Spatial Reasoning

  • Lech Polkowski
  • Andrzej Skowron
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 56)

Abstract

Rough Mereology has been proposed as a paradigm for approximate reasoning in complex information systems [65], [66], [67], [68], [76]. Its primitive notion is that of a rough inclusion functor which gives for any two entities of discourse the degree in which one of them is a part of the other. Rough Mereology may be regarded as an extension of Rough Set Theory as it proposes to argue in terms of similarity relations induced from a rough inclusion instead of reasoning in terms of indiscernibility relations (cf. Chapter 1); it also proposes an extension of Mereology as it replaces the mereological primitive functor of being a part with a more general functor of being a part in a degree. Rough Mereology has deep relations to Fuzzy Set Theory as it proposes to study the properties of partial containment which is also the fundamental subject of study for Fuzzy Set Theory.

Keywords

Boolean Algebra Inference Rule Spatial Reasoning Approximate Reasoning Individual Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AISB-97: Spatial Reasoning in Mobile Robots and Animals, Proceedings AISB-97 Workshop, Manchester Univ., Manchester, 1997.Google Scholar
  2. 2.
    J. Allen, Towards a general theory of action and time, Artificial Intelligence 23(20), 1984, pp. 123–154.MATHCrossRefGoogle Scholar
  3. 3.
    R. C. Arkin, Behavior-Based Robotics, MIT Press, Cambridge, MA, 1998.Google Scholar
  4. 4.
    N. Asher, L. Vieu, Toward a geometry of commonsense: a semantics and a complete axiomatization of mereotopology, in: Proceedings IJCAI’95, Morgan Kauffman, San Mateo, CA, 1995, pp. 846–852.Google Scholar
  5. 5.
    N. Asher, M. Aurnague, M. Bras, P. Sablayrolles, L. Vieu, De l’espace-temps dans l’analyse du discours, Rapport interne IRIT/95–08-R, Institut de Recherche en Informatique, Univ. Paul Sabatier, Toulouse, 1995.Google Scholar
  6. 6.
    M. Aurnague and L. Vieu, A theory of space-time for natural language semantics, in: K. Korta and J. M. Larrazábal, eds., Semantics and Pragmatics of Natural Language: Logical and Computational Aspects, ILCLI Series I, Univ. Pais Vasco, San Sebastian, 1995, pp. 69–126.Google Scholar
  7. 7.
    W. Bandler, L. J. Kohout, Fuzzy power sets and fuzzy implication operators, Fuzzy Sets and Systems 4, 1980, 13–30.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    J.G. Bazan, Hung Son Nguyen, Sinh Hoa Nguyen, P. Synak, J. Wróblewski, Rough set classification algorithms, this volume.Google Scholar
  9. 9.
    J. van Benthem, The Logic of Time, Reidel, Dordrecht, 1983.Google Scholar
  10. 10.
    T. Bittner, On ontology and epistemology of rough location, in: C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science 1661, Springer-Verlag, Berlin, 1999, pp. 433–448.CrossRefGoogle Scholar
  11. 11.
    G. Booch, Object-Oriented Analysis and Design with Applications, Addison-Wesley Publ., Menlo Park, 1994.Google Scholar
  12. 12.
    R. Casati, B. Smith, A.C. Varzi, Ontological tools for geographic representation, in: N. Guarino (ed.), Formal Ontology in Information Systems, IOS Press, Amsterdam, 1998, pp. 77–85.Google Scholar
  13. 12.
    R. Casati, B. Smith, A.C. Varzi, Ontological tools for geographic representation, in: N. Guarino (ed.), Formal Ontology in Information Systems, IOS Press, Amsterdam, 1998, pp. 77–85.Google Scholar
  14. 14.
    B. L. Clarke, A calculus of individuals based on connection, Notre Dame Journal of Formal Logic 22(2), 1981, pp. 204–218.MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Clay, Relation of Le’sniewski’s Mereology to Boolean Algebra, The Journal of Symbolic Logic 39, 1974, pp. 638–648.MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. G. Cohn, Calculi for qualitative spatial reasoning, in: J. Calmet, J. A. Campbell, J. Pfalzgraf (eds.), Artificial Intelligence and Symbolic Mathematical Computation, Lecture Notes in Computer Science 1138, Springer-Verlag, Berlin, 1996, pp. 124–143.Google Scholar
  17. 17.
    A. G. Cohn, N. M. Gotts, Representing spatial vagueness: a mereological approach, in: Principles of Knowledge Representation and Reasoning: Proceedings of the 5th International Conference KR’96, Morgan Kaufmann, San Francisco, 1996, pp. 230–241.Google Scholar
  18. 18.
    A. G. Cohn, A. C. Varzi, Connections relations in mereotopology, in: H. Prade (ed.), Proceedings ECAI’98. 13th European Conference on Artificial Intelligence, Wiley and Sons, Chichester, 1998, pp. 150–154.Google Scholar
  19. 19.
    A. G. Cohn, N. M. Gotts, The “egg-yolk” representation of regions with indeterminate boundaries, in: P. Burrough, A. M. Frank (eds.), Proceedings GISDATA Specialist Meeting on Spatial Objects with Undetermined Boundaries, Fr. Taylor, 1996, pp. 171–187.Google Scholar
  20. 20.
    Collected Works of Stanislaw Leśniewski, J. Srzednicki, S. J. Surma, D. Barnett, V. F. Rickey (eds.), Kluwer, Dordrecht, 1992.Google Scholar
  21. 21.
    E. Čech, Topological Spaces, Academia, Praha, 1966.MATHGoogle Scholar
  22. 22.
    Z. Cui, A. G. Cohn, D. A. Randell, Qualitative and topological relationships, in: Advances in Spatial Databases, Lecture Notes in Computer Science 692, Springer-Verlag, Berlin, 1993, pp. 296–315.Google Scholar
  23. 23.
    M. Dorigo, M. Colombetti, Robot Shaping. An Experiment in Behavior Engineering, MIT Press, Cambridge, MA, 1998.Google Scholar
  24. 24.
    M. J. Egenhofer, R. G. Golledge (eds.), Spatial and Temporal Reasoning in Geographic Information Systems, Oxford U. Press, Oxford, 1997.Google Scholar
  25. 25.
    C. Eschenbach, A predication calculus for qualitative spatial representations, in: C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science 1661, Springer-Verlag, Berlin, 1999, pp. 157–172.CrossRefGoogle Scholar
  26. 26.
    A. U. Frank, I. Campari (eds.), Spatial Information Theory: A Theoretical Basis for GIS, Lecture Notes in Computer Science 716, Springer-Verlag, Berlin, 1993.Google Scholar
  27. 27.
    A. U. Frank, W. Kuhn (eds.), Spatial Information Theory: A Theoretical Basis for GIS, Lecture Notes in Computer Science, 988, Springer-Verlag, Berlin, 1995.Google Scholar
  28. 28.
    C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science. Proceedings COSIT’99, Lecture Notes in Computer Science 1661, Springer-Verlag, Berlin, 1999.Google Scholar
  29. 29.
    C. Freksa, C. Habel, Repraesentation und Verarbeitung raeumlichen Wissens, Informatik-Fachberichte, Springer-Verlag, Berlin, 1990.CrossRefGoogle Scholar
  30. 30.
    A. Galton The mereotopology of discrete space, in: C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science 1661, Springer-Verlag, Berlin, 1999, pp. 250–266.Google Scholar
  31. 31.
    J. Glasgow, A formalism for model-based spatial planning, in: A. U. Frank, W. Kuhn (eds.), Spatial Information theory — A Theoretical Basis for GIS, Lecture Notes in Computer Science 988, Springer-Verlag, Berlin, 1995, pp. 501–518.CrossRefGoogle Scholar
  32. 32.
    N. M. Gotts, A. G. Cohn, A mereological approach to representing spatial vagueness,in: Working papers, the Ninth International Workshop on Qualitative Reasoning, QR’95, 1995.Google Scholar
  33. 33.
    N. M. Gotts, J. M. Gooday, A. G. Cohn, A connection based approach to commonsense topological description and reasoning, The Monist 79(1), 1996, pp. 51–75.MATHGoogle Scholar
  34. 34.
    N. Guarino, The ontological level, in: R. Casati, B. Smith, G. White (eds.), Philosophy and the Cognitive Sciences, Hoelder-Pichler-Tempsky, Vienna, 1994.Google Scholar
  35. 35.
    S. C. Hirtle, A. U. Frank (eds.), Spatial Information Theory: A Theoretical Basis for GIS, Lecture Notes in Computer Science 1329, Springer-Verlag, Berlin, 1997.Google Scholar
  36. 36.
    M. Inuiguchi, T. Tanino, Level cut conditioning approach to the necessity measure specification, in: Ning Zhong, A. Skowron, S. Ohsuga (eds.), New Directions in Rough Sets, Data Mining and Granular-Soft Computing, Lecture Notes in Artificial Intelligence 1711, Springer-Verlag, Berlin, 1999, pp. 193–202.CrossRefGoogle Scholar
  37. 37.
    B. Iwanuś, On Leśniewski’s Elementary Ontology, Studia Logica 31, 1973, pp. 73–119.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    T. Kotarbiński, Elements of the Theory of Knowledge, Formal Logic and Methodology of Science, Polish Sci. Publ., Warsaw, 1966.Google Scholar
  39. 39.
    D. Kortenkamp, R. P. Bonasso, R. Murphy (eds.), Artificial Intelligence and Mobile Robots, AAAI Press/MIT Press, Menlo Park, CA, 1998.Google Scholar
  40. 40.
    K. Krawiec, R. Slowiński, D. Vanderpooten, Learning decision rules from similarity based rough approximations, in: [70], pp.37–54.Google Scholar
  41. 41.
    R. Kruse, J. Gebhardt, F. Klawonn, Foundations of Fuzzy Systems, John Wiley & Sons, Chichester, 1984.Google Scholar
  42. 42.
    B. Kuipers, Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge, MIT Press, Cambridge MA, 1994.Google Scholar
  43. 43.
    B. J. Kuipers, Y. T. Byun, A qualitative approach to robot exploration and map learning, in: Proceedings of the IEEE Workshop on Spatial Reasoning and MultiSensor Fusion, Morgan Kaufmann, San Mateo CA, 1987, pp. 390–404.Google Scholar
  44. 44.
    B. J. Kuipers, T. Levitt, Navigation and mapping in large-scale space, AI Magazine 9(20), 1988, pp. 25–43.Google Scholar
  45. 45.
    L. Kulik, A. Klippel, Reasoning about cardinal directions using grids as qualitative geographic coordinates, in: C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science 1661, Springer-Verlag, Berlin, 1999, pp. 205–220.CrossRefGoogle Scholar
  46. 46.
    C. Kuratowski, Topology I, II, Academic Press and Polish Scientific Publishers, New York-Warsaw, 1966.Google Scholar
  47. 47.
    T. De Laguna, Point, line, surface as sets of solids, J. Philosophy 19, 1922, pp. 449–461.CrossRefGoogle Scholar
  48. 48.
    H. Leonard, N. Goodman, The calculus of individuals and its uses, The Journal of Symbolic Logic 5, 1940, pp. 45–55.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Cz. Lejewski, On Leśniewski’s Ontology, Ratio I(2), 1958, pp. 150–176.Google Scholar
  50. 50.
    Cz. Lejewski, A contribution to leśniewski’s mereology, Yearbook for 1954–55 of the Polish Society of Arts and Sciences Abroad V, 1954–55, pp. 43–50.Google Scholar
  51. 51.
    St. Leśniewski, Grundzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae 24, 192 , pp. 242–251.Google Scholar
  52. 52.
    St. Leśniewski, Über die Grundlegen der Ontologie, C.R. Soc. Sci. Lettr. Varsovie III, 1930, pp.111–132.Google Scholar
  53. 53.
    St. Leśniewski, On the Foundations of Mathematics, (in Polish), Przegląd Filozoficzny: 30, 1927, pp. 164–206; 31, 1928, pp. 261–291; 32, 1929, pp. 60–101; 33, 1930, pp. 77–105; 34, 1931, pp. 142–170.Google Scholar
  54. 54.
    St. Leśniewski, On the foundations of mathematics, Topoi 2, 1982, pp. 7–52 (an abridged version of the preceding position).Google Scholar
  55. 55.
    G. Link, Algebraic Semantics in Language and Philosophy, CSLI Lecture Notes 74, Stanford Center for the Study of Language and Information, 1998.MATHGoogle Scholar
  56. 56.
    S. Marcus, Tolerance rough sets, Čech topologies, learning processes, Bull. Polish Acad. Ser. Sci. Tech 42(3), 1994, pp. 471–487.MATHGoogle Scholar
  57. 57.
    D. M. Mark, M. J. Egenhofer, K. Hornsby, Formal models of commonsense geographic worlds, NCGIA Tech. Report 97–2, Buffalo, 1997.Google Scholar
  58. 58.
    C. Masolo, L. Vieu, Atomicity vs. infinite divisibility of space, in: C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science 1661, Springer-Verlag, Berlin, 1999, pp. 235–250.CrossRefGoogle Scholar
  59. 59.
  60. 60.
    E. Orlowska (ed.), Incomplete Information: Rough Set Analysis, Studies in Fuzziness and Soft Computing (J. Kacprzyk, ed.) vol. 13, Physica-Verlag/Springer-Verlag, Heidelberg, 1998.Google Scholar
  61. 61.
    P. Pagliani, A practical introduction to the modal-relational approach to approximation spaces, in: [691, pp. 209–232.Google Scholar
  62. 62.
    Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht, 1992.Google Scholar
  63. 63.
    Z. Pawlak, Decision rules, Bayes’ rule and rough sets, in: Ning Zhong, A. Skowron, S. Ohsuga (eds.), New Directions in Rough Sets, Data Mining and Granular-Soft Computing, Lecture Notes in Artificial Intelligence 1711, Springer-Verlag, Berlin, 1999, pp. 1–9.CrossRefGoogle Scholar
  64. 64.
    Z. Pawlak and A. Skowron, Rough membership functions, in: R. R. Yager, M. Fedrizzi, J. Kacprzyk (eds.), Advances in the Dempster-Schafer Theory of Evidence, John Wiley and Sons, New York, 1994, pp. 251–271.Google Scholar
  65. 65.
    L. Polkowski and A. Skowron, Rough mereology: a new paradigm for approximate reasoning, International Journal of Approximate Reasoning 15(4), 1997, pp. 333–365.MathSciNetCrossRefGoogle Scholar
  66. 66.
    L. Polkowski and A. Skowron, Adaptive decision-making by systems of cooperative intelligent agents organized on rough mereological principles, Intelligent Automation and Soft Computing. An International Journal 2(2), 1996, pp.123–132.MathSciNetGoogle Scholar
  67. 67.
    L. Polkowski, A. Skowron, Grammar systems for distributed synthesis of approximate solutions extracted from experience, in: Gh. Paun, A. Salomaa (eds.), Grammatical Models of Multi-Agent Systems, Gordon and Breach Sci. Publ./OPA, Amsterdam, 1999, pp. 316–333.Google Scholar
  68. 68.
    L. Polkowski, A. Skowron, Towards an adaptive calculus of granules, in: L. A. Zadeh, J. Kacprzyk (eds.), Computing with Words in Information/Intelligent Systems I, Studies in Fuzziness and Soft Computing (J. Kacprzyk ed.) vol. 33, Physica-Verlag/Springer-Verlag, Heidelberg, 1999, pp. 201–228.Google Scholar
  69. 69.
    L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery. Methodology and Applications,in: J. Kacprzyk, ed., Studies in Fuzziness and Soft Computing, vol. 18, Physica-Verlag/Springer-Verlag, Heidelberg, 1998.Google Scholar
  70. 70.
    L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery. Applications,Case Studies and Software Systems in: J. Kacprzyk, ed., Studies in Fuzziness and Soft Computing, vol. 19, Physica-Verlag/Springer-Verlag, Heidelberg, 1998.Google Scholar
  71. 71.
    H. Reichenbach, The Philosophy of Space and Time (repr.), Dover, New York, 1957.Google Scholar
  72. 72.
    R. Sikorski, Boolean Algebras, Springer-Verlag, Berlin, 1960.MATHGoogle Scholar
  73. 73.
    P. Simons, Parts — A Study in Ontology, Clarendon, Oxford, 1987.Google Scholar
  74. 74.
    Sinh Hoa Nguyen, Regularity analysis and its applications in data mining, this volume.Google Scholar
  75. 75.
    Sinh Hoa Nguyen, A. Skowron, P. Synak, Discovery of dat a patterns with applications to decomposition and classification problems, in: [70], pp. 55–97.Google Scholar
  76. 76.
    A. Skowron and L. Polkowski, Rough mereological foundations for design, analysis, synthesis and control in distributed systems, Information Sciences. An Intern. J. 104, 1998, pp. 129–156.MathSciNetMATHGoogle Scholar
  77. 77.
    A. Skowron, C. Rauszer, The discernibility matrices and functions in information systems, in: R. Slowiński (ed.), Intelligent Decision Systems. Handbook of Applications and Advances of the Rough Sets Theory, Kluwer, Dordrecht, 1992, pp. 331–362.Google Scholar
  78. 78.
    A. Skowron, On topology in information systems, Bull. Polish Acad. Ser. Sci. Math. 36, 1988, pp. 477–479.MathSciNetMATHGoogle Scholar
  79. 79.
    R. Slowiński, D. Vanderpooten, A generalized definition of rough approximations based on similarity, IEEE Transactions on Data and Knowledge Engineering, in print.Google Scholar
  80. 80.
    J. Slupecki, S. Leśniewski’s Calculus of Names, Studia Logica 3, 1955, pp. 7–72.MathSciNetCrossRefGoogle Scholar
  81. 81.
    B. Smith, Logic and formal ontology, in: J. N. Mohanty, W. McKenna (eds.), Husserl’s Phenomenology: A Textbook, Lanham: University Press of America, 1989, pp. 29–67.Google Scholar
  82. 82.
    B. Smith, Agglomerations, in: C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science 1661, Springer-Verlag, Berlin, 1999, pp. 267–282.CrossRefGoogle Scholar
  83. 83.
    B. Smith, Boundaries: an essay in mereotopology, in: L. Hahn (ed.), The Philosophy of Roderick Chisholm, Library of Living Philosophers, La Salle: Open Court, 1997, pp. 534–561.Google Scholar
  84. 84.
    B. Sobociński, Studies in Leśniewski’s Mereology, Yearbook for 1954–55 of the Polish Society of Art and Sciences Abroad 5, 1954, pp. 34–43.Google Scholar
  85. 85.
    B. Sobociński, L’analyse de l’antinomie Russellienne par Leśniewski, Methodos, I, 1949, pp. 94–107,Google Scholar
  86. 85a.
    B. Sobociński, L’analyse de l’antinomie Russellienne par Leśniewski, Methodos, I, 1949, pp. 220–228,Google Scholar
  87. 85b.
    B. Sobociński, L’analyse de l’antinomie Russellienne par Leśniewski, Methodos, I, 1949, pp. 308–316; II, 1950, pp. 237–257.Google Scholar
  88. 86.
  89. 87.
    J. G. Stell, Granulation for graphs, in: C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science 1661, Springer-Verlag, Berlin, 1999, pp. 416–432.Google Scholar
  90. 88.
    J. Stepaniuk, Knowledge discovery by application of rough set models, this volume.Google Scholar
  91. 89.
    A. Tarski, Les fondements de la géométrie des corps, in: Księga Pamiątkowa I Polskiego Zjazdu Matematycznego (Memorial Book of the Ist Polish Mathematical Congress), a supplement to Annales de la Sociéte Polonaise de Mathématique, Cracow, 1929, pp. 29–33.Google Scholar
  92. 90.
    A. Tarski, Appendix E, in: J. H. Woodger, The Axiomatic Method in Biology, Cambridge Univ. Press, Cambridge, 1937.Google Scholar
  93. 91.
    A. Tarski, What is elementary geometry?, in: L. Henkin, P. Suppes, A. Tarski (eds.), The Axiomatic Method with Special Reference to Geometry and Physics, Studies in Logic and Foundations of Mathematics, North-Holland, Amsterdam, 1959, pp. 16–29.Google Scholar
  94. 92.
    A. Tarski, Zur Grundlegung der Boolesche Algebra I, Fundamenta Mathematicae 24, 1935, pp.177–198.Google Scholar
  95. 93.
    T. Topaloglou, First-order theories of approximate space, in Working Notes of the AAAI Workshop on Spatial and Temporal Reasoning, Seattle, 1994, pp. 47–53.Google Scholar
  96. 94.
  97. 95.
  98. 96.
    A. N. Whitehead, Process and Reality. An Essay in Cosmology, Macmillan, New York, 1929 (corr. ed. : D. R. Griffin, D. W. Sherbourne (eds.), 1978).MATHGoogle Scholar
  99. 97.
    A. Wiweger, On topological rough sets, Bull. Polish Acad. Ser. Sci. Math. 37, 1988, pp. 89–93.MathSciNetGoogle Scholar
  100. 98.
    M. F. Worboys, Imprecision in finite resolution spatial data, Geoinformatica 2, 1998, pp. 257–279.CrossRefGoogle Scholar
  101. 99.
    L.A. Zadeh, Fuzzy logic = computing with words, IEEE Trans. on Fuzzy Systems 4, 1996, pp. 103–111.CrossRefGoogle Scholar
  102. 100.
    L. A. Zadeh, Toward a theory of fuzzy information granulation and its certainty in human reasoning and fuzzy logic, Fuzzy Sets and Systems 90, 1997, pp. 111–127.MathSciNetMATHCrossRefGoogle Scholar
  103. 101.
    L. A. Zadeh, Fuzzy sets, Information and Control 8, 1965, pp. 338–353.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2000

Authors and Affiliations

  • Lech Polkowski
    • 1
    • 2
  • Andrzej Skowron
    • 3
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Mathematics and Information SciencesWarsaw University of TechnologyWarsawPoland
  3. 3.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations