Logical and Algebraic Techniques for Rough Set Data Analysis

  • Ivo Düntsch
  • Günther Gediga
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 56)


Abstract. In this paper, we shall give an introduction to, and an overview of, the various relational, algebraic, and logical tools that are available to handle rule based reasoning.


Modal Logic Boolean Algebra Approximation Space Kripke Model Modal Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balbes, R. and Dwinger, P. (1974). Distributive Lattices. University of Missouri Press, Columbia.MATHGoogle Scholar
  2. 2.
    Balbiani, P. (1997). Axiomatisation of logics based on Kripke models with relative accessibility relations. In [55].Google Scholar
  3. 3.
    Balbiani, P. and Orlowska, E. (1999). A hierarchy of modal logics with relative accessibility relations. Journal of Applied Non—Classical Logics. To appear.Google Scholar
  4. 4.
    Becchio, D. (1978). Logique trivalente de Lukasiewicz. Ann. Sci. Univ. Clermont-Ferrand, 16:38–89.Google Scholar
  5. 5.
    Bennett, B. (1998). Modal semantics for knowledge bases dealing with vague concepts. Submitted for publication.Google Scholar
  6. 6.
    Birkhoff, G. (1948). Lattice Theory, volume 25 of Am. Math. Soc. Colloquium Publications. AMS, Providence, 2 edition.Google Scholar
  7. 7.
    Boicescu, V., Filipoiu, A., Georgescu, G., and Rudeanu, S. (1991). Lukasiewicz— Moisil Algebras, volume 49 of Annals of Discrete Mathematics. North Holland, Amsterdam.Google Scholar
  8. 8.
    Bull, R. and Segerberg, K. (1984). Basic modal logic. In [33], pages 1–88.Google Scholar
  9. 9.
    Comer, S. (1991). An algebraic approach to the approximation of information. Fundamenta Informaticae, 14:492–502.MathSciNetMATHGoogle Scholar
  10. 10.
    Comer, S. (1993). On connections between information systems, rough sets, and algebraic logic. In Rauszer, C., editor, Algebraic Methods in Logic and Cornputer Science, volume 28 of Banach Center Publications, pages 117–124. Polish Academy of Science, Warszawa.Google Scholar
  11. 11.
    Davey, B. A. and Priestley, H. A. (1990). Introduction to Lattices and Order. Cambridge University Press.MATHGoogle Scholar
  12. 12.
    Demri, S. (1996). A class of information logics with a decidable validity problem. In 21st International Symposium on Mathematical Foundations of Computer Science, volume 1113 of LNCS, pages 291–302. Springer-Verlag.Google Scholar
  13. 13.
    Demri, S. (1997). A completeness proof for a logic with an alternative necessity operator. Studia Logica, 58:99–112.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Demri, S. and Orlowska, E. (1998). Informational representability of models for information logic. In Orlowska, E., editor, Logic at Work. Physica — Verlag, Heidelberg. To appear.Google Scholar
  15. 15.
    Dntsch, I. (1983). On free or projective Stone algebras. Houston J. Math., 9:455–463.MathSciNetGoogle Scholar
  16. 16.
    Düntsch, I. (1994). Rough relation algebras. Fundamenta Informaticae, 21:321–331.MathSciNetMATHGoogle Scholar
  17. 17.
    Diintsch, I. (1997). A logic for rough sets. Theoretical Computer Science, 179(12):427–436.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Diintsch, I. and Gediga, G. (1996). On query procedures to build knowledge structures. J. Math. Psych., 40(2):160–168.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Düntsch, I. and Gediga, G. (1997). Algebraic aspects of attribute dependencies in information systems. Fundamenta Informaticae, 29:119–133.MathSciNetMATHGoogle Scholar
  20. 20.
    Düntsch, I. and Gediga, G. (1998). Simple data filtering in rough set systems. International Journal of Approximate Reasoning, 18(1–2):93–106.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Düntsch, I. and Gediga, G. (1999). A note on the correspondences among entail relations, rough set dependencies, and logical consequence. Submitted for publication.Google Scholar
  22. 22.
    Düntsch, I., Gediga, G., and Orlowska, E. (1999a). Relational attribute systems. Submitted for publication.Google Scholar
  23. 23.
    Düntsch, I. and Orlowska, E. (1999). Mixing modal and sufficiency operators. Bulletin of the Section of Logic, Polish Academy of Sciences, 28(2):99–106.MATHGoogle Scholar
  24. 24.
    Düntsch, I. and Orlowska, E. (2000a). Beyond modalities: Sufficiency and mixed algebras. Algebra Universalis. Submitted for publication.Google Scholar
  25. 25.
    Diintsch, I. and Orlowska, E. (2000b). Logics of complementarity in information systems. Mathematical Logic Quarterly, 46(4). To appear.Google Scholar
  26. 26.
    Dntsch, I. and Orlowska, E. (2000c). A proof system for contact relation algebras. Journal of Philosophical Logic. To appear.Google Scholar
  27. 27.
    Düntsch, I., Orlowska, E., and Wang, H. (2000a). An algebraic and logical approach to the approximation of regions. In Proc of the 5th Seminar of Relational Methods in Computer Science, Banff, Jan 2000. To appear.Google Scholar
  28. 28.
    Düntsch, I., Orlowska, E., and Wang, H. (2000b). Approximating regions. In preparation.Google Scholar
  29. 29.
    Düntsch, I., Wang, H., and McCloskey, S. (1999b). Relation algebras in qualitative spatial reasoning. Fundamenta Informaticae, 39:229–248.MathSciNetGoogle Scholar
  30. 30.
    Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P., and Johannesen, J. (1990). Introduction to knowledge spaces: How to build, test and search them. Psychological Review, 97:202–234.CrossRefGoogle Scholar
  31. 31.
    Fitting, M. (1993). Basic modal logic. In Gabbay, D. M., Hogger, C. J., and Robinson, J. A., editors, Logical foundations, volume 1 of Handbook of Logic in Artificial Intelligence and Logic Programming, pages 368–448. Clarendon Press, Oxford.Google Scholar
  32. 32.
    Gabbay, D. M. (1985). Theoretical foundations for non-monotonic reasoning in expert systems. In Apt, K. R., editor, Logics and Models of Concurrent Systems, volume F13 of NATO Advanced Studies Institute, pages 439–457. Springer, Berlin.Google Scholar
  33. 33.
    Gabbay, D. M. and Guenthner, F., editors (1984). Extensions of classical logic, volume 2 of Handbook of Philosophical Logic. Reidel, Dordrecht.Google Scholar
  34. 34.
    Gargov, G., Passy, S., and Tinchev, T. (1987). Modal environment for Boolean speculations. In Skordev, D., editor, Mathematical Logic and Applications, pages 253–263, New York. Plenum Press.CrossRefGoogle Scholar
  35. 35.
    Gediga, G. and Düntsch, I. (2000). Statistical techniques for rough set data analysis. In Polkowski, L., editor, Rough sets: New developments. Physica Verlag, Heidelberg. To appear.Google Scholar
  36. 36.
    Düntsch, G. (1978). General Lattice Theory. Birkhäuser, Basel.Google Scholar
  37. 37.
    Humberstone, I. L. (1983). Inaccessible worlds. Notre Dame Journal of Formal Logic, 24:346–352.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Iturrioz, L. and Orlowska, E. (1996). A Kripke-style and relational semantics for logics based on Lukasiewicz algebras. Conference in honour of J. Lukasiewicz, Dublin.Google Scholar
  39. 39.
    Iwinski, T. B. (1987). Algebraic approach to rough sets. Bull. Polish Acad. Sci. Math., 35:673–683.MathSciNetMATHGoogle Scholar
  40. 40.
    Jónsson, B. and Tarski, A. (1951). Boolean algebras with operators I. Amer. J. Math., 73:891–939.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Jónsson, B. and Tarski, A. (1952). Boolean algebras with operators II. Amer. J. Math., 74:127–162.CrossRefMATHGoogle Scholar
  42. 42.
    Konikowska, B. (1987). A formal language for reasoning about indiscernibility. Bulletin of the Polish Academy of Sciences, Mathematics, 35:239–249.MathSciNetMATHGoogle Scholar
  43. 43.
    Konikowska, B. (1997). A logic for reasoning about similarity. Studia Logica, 58:185–226.MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Koppen, M. and Doignon, J.-P. (1990). How to build a knowledge space by querying an expert. J. Math. Psych., 34:311–331.MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Novotný, M. (1997a). Applications of dependence spaces. In [55], pages 247–289.Google Scholar
  46. 46.
    Novotný, M. (1997b). Dependence spaces of information systems. In [55], pages 193–246.Google Scholar
  47. 47.
    Orlowska, E. (1984). Modal logics in the theory of information systems. Zeitschr. f. Math. Logik und Grundlagen der Math., 30:213–222.MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Orlowska, E. (1988a). Kripke models with relative accessibility relations and their applications to inference with incomplete information. In Mirkowska, G. and Rasiowa, H., editors, Mathematical Problems in Computation Theory, volume 21 of Banach Center Publications, pages 327–337. PWN.Google Scholar
  49. 49.
    Orlowska, E. (1988b) Logical aspects of learning concepts. Journal of Approximate Reasoning, 2:349–364.CrossRefMATHGoogle Scholar
  50. 50.
    Orlowska, E. (1989). Logic for reasoning about knowledge. Zeitschr. f. Math. Logik und Grundlagen der Math., 35:559–572.MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Orlowska, E. (1990). Kripke semantics for knowledge representation logics. Studia Logica, 49:255–272.MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Orlowska, E. (1991). Relational interpretation of modal logics. In Andréka, H., Monk, J. D., and Németi, I., editors, Algebraic Logic, volume 54 of Colloquia Mathematica Societatis János Bolyai, pages 443–471. North Holland, Amsterdam.Google Scholar
  53. 53.
    Orlowska, E. (1995). Information algebras. In Proceedings of AMAST 95, volume 639 of Lecture Notes in Computer Science. Springer-Verlag.Google Scholar
  54. 54.
    Orlowska, E. (1996). Relational proof systems for modal logics. In Wansing, H., editor, Proof theory of modal logic, pages 55–78. Kluwer, Dordrecht.Google Scholar
  55. 55.
    Orlowska, E., editor (1997a). Incomplete Information — Rough Set Analysis. Physica — Verlag, Heidelberg.Google Scholar
  56. 56.
    Orlowska, E. (1997b). Introduction: What you always wanted to know about rough sets. In [55], pages 1–20.Google Scholar
  57. 57.
    Orlowska, E. and Pawlak, Z. (1987). Representation of nondeterministic information. Theoretical Computer Science, 29:27–39.MathSciNetCrossRefGoogle Scholar
  58. 58.
    Pagliani, P. (1997). Rough sets theory and logic-algebraic structures. In [55], pages 109–190.Google Scholar
  59. 59.
    Pawlak, Z. (1973). Mathematical foundations of information retrieval. ICS Research Report 101, Polish Academy of Sciences.Google Scholar
  60. 60.
    Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data, volume 9 of System Theory, Knowledge Engineering and Problem Solving. Kluwer, Dordrecht.Google Scholar
  61. 61.
    Pomykala, J. and Pomykala, J. A. (1988). The Stone algebra of rough sets. Bull. Polish Acad. Sci. Math., 36:495–508.MathSciNetMATHGoogle Scholar
  62. 62.
    Rasiowa, H. and Sikorski, R. (1963). The Mathematics of Metamathematics, volume 41 of Polska Akademia Nauk. Monografie matematyczne. PWN, Warsaw.Google Scholar
  63. 63.
    Tarski, A. (1930). Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. Monatsh. Math. Phys., 37:361–404.MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Vakarelov, D. (1977). Notes on N-lattices and constructive logic with strong negation. Studia Logica, 36:109–125.MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Vakarelov, D. (1989). Modal logics for knowledge representation systems. In Meyer, A. R. and Zalessky, M., editors, Symposium on Logic Foundations of Computer Science, Pereslavl-Zalessky, volume 363 of LNCS, pages 257–277. Springer-Verlag.Google Scholar
  66. 66.
    Vakarelov, D. (1991). Modal logics for knowledge representation systems. Theoretical Computer Science, 90:433–456.MathSciNetMATHGoogle Scholar
  67. 67.
    Vakarelov, D. (1992). Consequence relations and information systems. In Slowiński, R., editor, Intelligent decision support: Handbook of applications and advances of rough set theory, volume 11 of System Theory, Knowledge Engineering and Problem Solving, pages 391–399. Kluwer, Dordrecht.Google Scholar
  68. 68.
    Vakarelov, D. (1997a). Information systems, similarity relations, and modal logics. In 155], pages 492–550.Google Scholar
  69. 69.
    Vakarelov, D. (1997b). Modal logics of arrows. In de Rijke, M., editor, Advances in intensional logic, pages 137–171. Kluwer.Google Scholar
  70. 70.
    van Benthem, J. (1984). Correspondence theory. In [33], pages 167–247.Google Scholar
  71. 71.
    Varlet, J. C. (1968). Algèbres des Lukasiewicz trivalentes. Bull. Soc. Roy. Sci. Liège, 36:399–408.MathSciNetGoogle Scholar
  72. 72.
    Varlet, J. C. (1972). A regular variety of type (2,2,1,1,0,0). Algebra Universalis, 2:218–223.MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Wang, H., Düntsch, I., and Gediga, G. (2000). Classificatory filtering in decision systems. International Journal of Approximate Reasoning. To appear.Google Scholar
  74. 74.
    Worboys, M. (1998). Imprecision in finite resolution spatial data. Geoinformatica, 2(3):257–280.CrossRefGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2000

Authors and Affiliations

  • Ivo Düntsch
    • 1
  • Günther Gediga
    • 2
  1. 1.School of Information and Software EngineeringUniversity of UlsterNewtownabbeyN. Ireland
  2. 2.FB Psychologie / MethodenlehreUniversität OsnabrückOsnabrückGermany

Personalised recommendations