Advertisement

Fuzzy Graphs and Shortest Paths

  • Davender S. Malik
  • John N. Mordeson
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 58)

Abstract

The material in this section is taken from [36].

Keywords

Short Path Fuzzy Number Membership Degree Short Path Problem Minimal Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamo, J.H., Fuzzy decision trees, Fuzzy Sets and Systems, 4 (1980) 207–219. MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Behzad, M., Chartrand, G., and Lesniak-Foster, L., Graphs and Diagraphs, Wadsworth International, Belmont, CA, 1979.Google Scholar
  3. 3.
    Bellman, R. and Klaba R., On kth best policies, J. of Siam. 8 (1960) 582–585.Google Scholar
  4. 4.
    Bollabas, B., Random Graphs, Academic Press, London, 1985.Google Scholar
  5. 5.
    Bonissone, P.P., Summarizing and propogating uncertain information with triangular norms, Internat. J. Approximate Reasoning, 1 (1987) 71–101.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bortolan, G. and Degani, R., A review of some methods for ranking fuzz subsets, Fuzzy Sets and Systems, 16 (1985), 1–19.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carrayway, R. and Morin, T., Monotonicity, preference structures and principles of optimality, Computational Combinatorics, URI Technical Report CC-86–3, Purdue University, West Lafayette, In, 1986.Google Scholar
  8. 8.
    Chanas, S., Fuzzy optimization in networks, In: Operation Models Using Fuzzy Sets and Possibility Theory, Eds.: J. Kacprzyk and S.A. Orlovski, D. Reidel Publishing Co., 1987, 303–327.Google Scholar
  9. 9.
    Chanas, S. and Kamburowski, The use of variables in PERT, Fuzzy Sets and Systems, 5 (1981) 11–19.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chanas, S. and Kolodziejczynk, W., Maximum flow in a network with fuzzy arc capacities, Fuzzy Sets and Systems, 8 (1982) 165–173.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chanas, S. and Kolodziejczynk, W., Integer flows in networks with fuzzy capacity constraints, Inst. of Management, Tech. Univ. of Wroclaw, Report 368 (1982).Google Scholar
  12. 12.
    Chanas, S. and Kolodziejczynk, W., Real-valued flows in a network with fuzzy arc capacities, Fuzzy Sets and Systems, 13 (1984) 139–151.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Chanas, S. and Kolodziejczynk, W., Integer flows in network with fuzzy capacity constraints, Networks, 16 (1986) 17–32.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Delgado, M., Verdegay, J. L., and Vila, M. A., On fuzzy tree definition, European J. Oper. Res., 22 (1985) 243–249.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Delgado, M., Verdegay, J.L,. and Vila, M.A., El problema del arbol generador minimal para grafos disusos, Trabajos de Investigacion Operativa, 2 (1987) 3–20.MATHCrossRefGoogle Scholar
  16. 16.
    Delgado, M., Verdegay, J.L., and Vila, M.A., Fuzzy transportation problems: A general analysis, in J. Kacprzyk and S. Orlovski (eds.), Optimization Models Using Fuzzy Sets and Possibility Theory, P. Reidel, Dordrecht, The Netherlands, 1987, 342–358.Google Scholar
  17. 17.
    Delgado, M., Verdegay, J. L. and Vila, M. A., On valuation and optimization problems in fuzzy graphs: a general approach and some particular cases, ORSA J. Comput., 2 (1990) 74–83.MATHCrossRefGoogle Scholar
  18. 18.
    Dubois, D. and Prade, H., Algorithmes de plus court chemins pour trater des donnees flous, R.A.I.R.O. Recherche Operationelle/Operational Research, 12 (1978) 214–227.Google Scholar
  19. 19.
    Dubois, D. and Prade, H., Fuzzy Sets and System, Academic Press, New York 1980.Google Scholar
  20. 20.
    Dubois, D., Farreny, H. and Prade, H., Combinatorial search with fuzzy estimates, in J. Kacprzyk and S. Orlovski (eds.), Optimization Models Using Fuzzy Sets and Possibility Theory, P. Reidel, Dordrecht, The Netherlands, 1987, 171–185.Google Scholar
  21. 21.
    Fujishige, S., Submodular systems and related topics, Math. Programming Study, 22 (1984) 113–131.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Garey, M.R. and Johnson, D.S., Computers and Interactability: A Guide to the Theory of NP-Completéness, Freeman, San Francisco, CA, 1979.MATHGoogle Scholar
  23. 23.
    Gonzalez, A., Metodso Subjetivos para la Comparacion de Numeros Difusos, Ph. D. Thesis, University of Granada, 1987.Google Scholar
  24. 24.
    Gonzalez, A. and Vila, M.A., A discrete method to study indifference and order relations between fuzzy numbers, Inform. Sci., 56 (1991) 245–258.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gonzalez, A. and Vila, M.A., Dominance relation on fuzzy numbers, submitted to Inform. Sci., 64 (1992) 1–16.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Händler, W., Multiprocessors: Efficiency and fault tolerance, in: Architektur and Betrieb von Rechensystemen (NTG-Fachberichte 92, VDE-Verlag, Berlin-Offenbach, 1986), 7–29 (in German).Google Scholar
  27. 27.
    Hearn, D.W., Lawphongpanich, S., and Ventura J.A., Restricted simplicial decomposition: Computation and extensions, Math. Programming Study, 31 (1987) 99–118.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Ignizio, J. and Daniels, S., Fuzzy multicriteria integer programming via fuzzy generalized networks, Fuzzy Sets and Systems, 10 (1983) 261–270.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Itakura, H. and Nishikawa, Y., Fuzzy network technique for technological forecasting, Fuzzy Sets and Systems, 14 (1984) 99–113.MATHCrossRefGoogle Scholar
  30. 30.
    Jensen, P. and Barnes, J., Network Flow Programming, John Wiley and Sons, New York, 1980.MATHGoogle Scholar
  31. 31.
    Katsumata Y., Tsuda E. and Yamashita H., Fuzzy clustering and ordering. Instructional Analysis Applying Fuzzy Graphs, preprints of International Workshop on Fuzzy Systems Applications, Fukuoka, Japan, 1988.Google Scholar
  32. 32.
    Katsumata, Y., Tsuda, E. and Yamashita, H., The difference of two fuzzy graphs, preprints of International Workshop on Fuzzy Systems Applications, Fukuoka, Japan, 1988.Google Scholar
  33. 33.
    Kaufman, A., Introduction to the Theroy of Fuzzy Sets, Vol. 1, Academic Press, New York, 1975.Google Scholar
  34. 34.
    Kauffman, A., Introduction a la Theorie des Sousensambles, Vol 1. Flous, Masson et Cie, Paris, France, 1977.Google Scholar
  35. 35.
    Kim, K.H. and Roush, F.W., Fuzzy flows on networks, Fuzzy Sets and Systems, 8 (1982) 35–38.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Klein, C. M., Fuzzy shortest paths, Fuzzy Sets and Systems, 39 (1991) 27–41.MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Klein, C., A model for transportation of hazardous waste, Department of Industrial Engineering, University of Missouri-Columbia, working paper series #1210388 (1988).Google Scholar
  38. 38.
    Klein, C.M. and Yeralan, S., Network flow models with fuzzy auxilary edge and vertex attributes, in J.L. Chameau and J. Yao, Eds, Proc. of Nafips Workship, Purdue University, West Lafayette, IN (May 5–7, 1987) 431–444.Google Scholar
  39. 41.
    Koczy L.T., Fuzzy trees in distributed systems design, preprints of International Workshop on Fuzzy Systems Applications, Fukuoka, Japan, 1988.Google Scholar
  40. 42.
    Lawler, E., Combinatorial Optimization; Networks and Matroids, Holt Reinhart and Winston, New York 1976.MATHGoogle Scholar
  41. 43.
    Lovász, D. L., Submodular functions and convexity in: A. Bachem, M. Grötschel and B. Korte, Eds., Mathematical Programming the State of the Art-Bonn 1982 (Springer-Verlag, New York, 1983) 235–257.Google Scholar
  42. 44.
    Mares, M. and Horak, J., Fuzzy quantities in networks, Fuzzy Sets and Systems, 10 (1988) 123–134.CrossRefGoogle Scholar
  43. 45.
    McAllister, M., Fuzzy matrices and diagraphs, Communications of First I.F.S.A Congress, Mallorca, Spain, 1985.Google Scholar
  44. 46.
    Morioka, M. and Yamasita, H., Extraction method of difference between fuzzy graphs, preprints of IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, (Marseille, France) E. Sanchez and M.M. Gupta (eds.), Pergamon Press, New York, 1983.Google Scholar
  45. 47.
    Nair, P.S., Extension principle revisited, JCIS’98, Vol. II, (1998) 11–14.Google Scholar
  46. 48.
    Rosenfeld, A., Fuzzy graphs, In: Zadeh, L.A., Fu, K.S., Tanaka, K., and Shimura, M., eds, Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press, New York, 1975, 75–95.Google Scholar
  47. 49.
    Takeya M., A clustering method for a fuzzy diagraph based on connectedness and its applications to instructional evaluation, preprints of IFAC Symposium on Fuzzy Information, Knowledge Repsentaion and Decision Analysis, (Marseille, France) E. Sanchez and M. M. Gupta (eds.), Pergamon Press, New York, 1983.Google Scholar
  48. 50.
    Ventura, J.A. and Klein, C. M., An algorithm for certain convex network problems, AMSE Rev., 8 (1988) 31–42.Google Scholar
  49. 51.
    Yager R., Paths of least resistence in possibilistic production systems, Fuzzy Sets and Systems, 19 (1986) 121–132.MathSciNetMATHCrossRefGoogle Scholar
  50. 52.
    Yeh R.T. and Bang S.Y., Fuzzy relations, fuzzy graphs, and their applications to clustering analysis, In: Zadeh, L.A., Fu, K.S., Tanaka, K., and Shimura, M., eds., Fuzzy Sets and Their Applications to Cognitive Decision Processes, Academic Press, London, 1975, 125–150.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Davender S. Malik
    • 1
  • John N. Mordeson
    • 1
  1. 1.Creighton UniversityOmahaUSA

Personalised recommendations