• Davender S. Malik
  • John N. Mordeson
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 58)


A graph (or undirected graph) G is a pair G = (V, E), where V is a nonempty set and EV x V with E symmetric. V is called the set of vertices or nodes and E is called the set of edges or arcs. Each edge eE is associated with an unordered pair of vertices. Suppose e is a unique edge associated with the vertices i and j. Then we write e = (i, j) or e = (j, i).


Membership Function Fuzzy Number Capacity Constraint Optimal Flow Fuzzy Linear Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agerwala, T., Putting Petri to work, IEEE Computer, (1979) 85–94.Google Scholar
  2. 2.
    Alsina, C., Trillas, E. and Valverde, L, On non-distributed logical connectivity for fuzzy set theory, Busefal, 2 (1980) 18–29.Google Scholar
  3. 3.
    Atabakhche, H., Barhalho, D., Valette, R., and Courvoisier, M., From Petri net based PLC’s to knowledge based control, in Proc. IECON’86, 817–822.Google Scholar
  4. 4.
    Bellman, R.E. and Zadeh, L.A., Decision making in a fuzzy environment, Managemant Sci., 17 (1970) 141–164.MathSciNetGoogle Scholar
  5. 5.
    Boffey, T.B., Graph Theory in Operations Research, Macmillan, London, 1982.MATHGoogle Scholar
  6. 6.
    Burr, D. J., A neural netswork digital recognizer, in Proc. 1986 Conf. Syst. Man Cybern., Atlanta, GA, 2 (1986) 1621–1625.Google Scholar
  7. 7.
    Cardoso, J. and Camargo, H., Editors, Fuzziness in Petri Nets, Studies in Fuzziness and Soft Computing 22, Physicia-Verlag, 1999.MATHGoogle Scholar
  8. 8.
    Carpenter, G. and Grossberg, S., A massively parallel architecture for a self-organizing neural pattern recognition machine, Comput. Vision, Graphics, Image Processing, 37 (1987) 54–115.CrossRefGoogle Scholar
  9. 9.
    Chanas, S., Reliable flows in network, Institute of Management, Technical University of Wroclaw, Report 36, 1984.Google Scholar
  10. 10.
    Chanas, S. and Kamburowski, J., The use of fuzzy variables in PERT, Fuzzy Sets and Systems, 1 (1981) 11–19.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chanas, S. and Kolodziejczynk, W., Maximum flow in a network with fuzzy arc capacities, Fuzzy Sets and Systems, 8 (1982) 165–173.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chanas, S. and Kolodziejczynk, W., Integer flows in networks with fuzzy capacity constraints, Inst. of Management, Tech. Univ. of Wroclaw, Report 368 (1982).Google Scholar
  13. 13.
    Chanas, S. and Kołodziejczynk, W., Real-valued flows in a network with fuzzy arc capacities, Fuzzy Sets and Systems, 13 (1984) 139–151.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Chanas, S. and Kolodziejczynk, W., Integer flows in network with fuzzy capacity constraints, Networks, 16 (1986) 17–31.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dijkstra, E.W., A note on two problems in connection with graphs, Numer. Math., 1 (1959) 269–271.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dubois, D. and Prade, H., Operations on fuzzy numbers, Internat. J. Systems Sci., 9 (1978) 613–626.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dubois, D. and Prade, H., Fuzzy Sets and System, Academic Press, New York 1980.Google Scholar
  18. 18.
    Ford, L.R. Jr., and Fulkerson, D.R., Maximal flow through a network, Canad. J. Math., 8 (1956) 339–404.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ford, L.R. Jr., and Fulkerson, D.R, A simple algorithm for finding maximal network flows and an application to Hitchcock problem, Canad. J. Math., 9 (1957) 210–218.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Ford, L.R. Jr., and Fulkerson, D.R, Flows in Networks, A RAND Corporation Research Study (Princeton Univ. Press 1962) .Google Scholar
  21. 21.
    Gaines, B. R. and Shaw, M. L., From fuzzy logic to expert systems, Inform. Sci., 36 (1985) 5–15.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hamacher, H., Leberling H., and Zimmermann, H.-J., Sensitive analysis in fuzzy linear programming, Fuzzy Sets and Systems, 1 (1978) 269–281.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Holt, A. W. and Commoner, F., Events and Condition. New York: Applied Data Research, 1970Google Scholar
  24. 23a.
    Holt, A. W. and Commoner, F., Rec. Project MAC Conf. Concurrent Syst. and Parallel Computation. New York: ACM 1970, pp. 1–52.Google Scholar
  25. 24.
    Hopfield, J., Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA. 17 (1987).Google Scholar
  26. 25.
    Johnsonbaugh, R., Discrete Mathematics, 4th edition, Prentice Hall, Inc, 1997.MATHGoogle Scholar
  27. 26.
    Klement, E.P., Fuzzy sigma algebra and fuzzy measures with respect to t-norms, Round table on Fuzzy Sets, Lyon 1980.Google Scholar
  28. 27.
    Kolodziejczynk, W., Flows in transportion networks with non-sharply defined parematers analysis, Ph.D. Thesis, Inst. of Management, Techn. Univ. of Wroclaw, Report 347 (1981) (in Polish) .Google Scholar
  29. 28.
    Looney, C.G., Fuzzy petri nets for rule-based decision making, IEEE Trans. Sys. Man and Cyb., 18 (1988) 178–183.CrossRefGoogle Scholar
  30. 29.
    Looney, C.G., Expert control design with fuzzy rule matrices, Int. J. Expert Syst.: Res. Appl., in press.Google Scholar
  31. 30.
    Looney, C.G. and Alfize, A. R., Logical controls via Boolean rule matrix transformations, IEEE Trans. Syst. Man Cybern., 17 (1987).Google Scholar
  32. 31.
    Negoita, C.V. and Sularia, M., Fuzzy linear programming and tolerance in planning, Econ. Comput. Econ. Cyberte. Stud. Res., 1 (1975) 3–15.Google Scholar
  33. 32.
    Negoita, C.V., Flonder, P. and Sularia, M., On fuzzy environment in optimization problems. Proc. Third International Congress of Cybernetics and Systems, Bucharest August 1975, (Abacus Press, London 1976) .Google Scholar
  34. 33.
    Peterson, J. L., Petri nets. Theory and the Modelling of Systems. Englewood Cliffs, NJ: Prentice-Hall, 1981.Google Scholar
  35. 34.
    Petri, C. A., Kommunikation mit Automaten, Schriften des RheinishWestfalischen Institutes fur Instrumentelle Mathematik an der Universtät Bonn, Heft 2, Bonn, W. Germany, 1962.Google Scholar
  36. 35.
    Sugeno, M., An introductory survey of fuzzy control, Inform. Sci., vol. 36, pp. 59–83, 1985.MathSciNetMATHCrossRefGoogle Scholar
  37. 36.
    Tabak, D., Petri net representation of decision models, IEEE Trans. Syst. Man Cybern., 15 (1985) 812–818.CrossRefGoogle Scholar
  38. 37.
    Thole, U., Zimmermann, H.-J., and Zysno, P., On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems, 2 (1979) 167–180.MATHCrossRefGoogle Scholar
  39. 38.
    Thomason, M. G., Convergence of powers of a fuzzy matrix, J. Math. Anal. Appl., 57 (1977) 476–480.MathSciNetMATHCrossRefGoogle Scholar
  40. 39.
    Warefield, J., Binary matrices in system modelling, IEEE Trans. Syst. Man Cybern., 3 (1973) 441–449.CrossRefGoogle Scholar
  41. 40.
    Zimmermann, HH.-J., Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1 (1978) 45–55.MathSciNetMATHCrossRefGoogle Scholar
  42. 41.
    Zimmermann, .-J. and , Latent connectives and human decision making, Fuzzy Sets and Systems, 4 (1980) 37–51.MATHCrossRefGoogle Scholar
  43. 42.
    Zadeh, L.A., Fuzzy sets, Information and Control, 8(1965) 338–353.MathSciNetMATHCrossRefGoogle Scholar
  44. 43.
    Zadeh, L.A., Fuzzy sets as a basis for theory of possibility, Fuzzy Sets and Systems, 1 (1978) 3–28.MathSciNetMATHCrossRefGoogle Scholar
  45. 44.
    Zisman, M. D., Use of production systems for modelling asynchronous, concurrent processes, in Pattern Directed Inference Systems, D. A. Waterman and F. Hayes-Roth, Eds. New York: Academic Press. 1978, pp. 53–68.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Davender S. Malik
    • 1
  • John N. Mordeson
    • 1
  1. 1.Creighton UniversityOmahaUSA

Personalised recommendations