Mobile Robot Path Tracking and Visual Target Tracking Using Fuzzy Logic

  • Annibal Ollero
  • Joaquin Ferruz
  • Omar Sánchez
  • Guillermo Heredia
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 61)


Path tracking is one of the most significant functions of autonomous vehicles and mobile robots. In general, tracking involves both sensing and control components.


Fuzzy Logic Mobile Robot Fuzzy Controller Target Tracking Visual Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrue B.C., F. Cuesta, R. Braunstingl and A. Ollero: Application of Virtual Perception Memory to Control a Non-Holonomic Mobile Robot. 3rd IFAC Symposium on Intelligent Components for Control Applications. SICICA-97, Annecy, France. 78 (1997).Google Scholar
  2. 2.
    Arrue B.C., F. Cuesta, R. Braunstingl and A. Ollero: Fuzzy behaviours Combination to Control a Non-Holonomic Mobile Robot Using Virtual Perception Memory, Proceedings of the 6th IEEE International Conf. on Fuzzy Systems, Barcelona, Spain (1997).Google Scholar
  3. 3.
    Arsénio, A. and J. Santos-Victor: Robust Visual Tracking by an Active Observer, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, (1997), pp. 1342–1347.Google Scholar
  4. 4.
    Ayache, N.: Artificial Vision for Mobile Robots, The MIT Press, Cambridge, Massachusetts (1991).Google Scholar
  5. 5.
    Braunstingl, R.: Improving Reactive Navigation Using Perception Tracking, in 2nd World Automation Congress, Montepellier, France (1996).Google Scholar
  6. 6.
    Brown, C.: Gaze Controls with Interactions and Delays, IEEE Transactions on Systems. Man and Cybernetics, Vol. 20, No. 1, pp. 518–527 (1990).CrossRefGoogle Scholar
  7. 7.
    Dias, J., C. Paredes, I. Fonseca, H. Araujo, J. Batista and A.T. Almeida: Simulating Pursuit with Machine Experiments with Robots and Artificial Vision, IEEE Transactions on Robotics and Automation, Vol. 14, No. 1, pp. 1–18 (1998).CrossRefGoogle Scholar
  8. 8.
    Ferruz, J. and A. Ollero: Integrated Real-Time Vision System for Vehicle Control in Non-Structured Environments, Engineering Applications of Artificial Intelligence, Vol. 13, No. 3, pp. 215–236 (2000).CrossRefGoogle Scholar
  9. 9.
    Ferruz J. and A. Ollero: Real-time Feature Matching in Image Sequences for Non-structured Environments. Applications to Vehicle Guidance, Journal of Intelligent and Robotic Systems, Vol. 28, No. 1/2, pp. 85–123 (2000).CrossRefGoogle Scholar
  10. 10.
    Ferruz J. and A. Ollero: Visual Generalized Predictive Path Tracking, Proceeding of the IEEE International Workshop on Advanced Motion Control, Coimbra, pp. 159–164 (1998).Google Scholar
  11. 11.
    García-Cerezo, A., A. Ollero and J.L. Martinez: Design of a robust high performance fuzzy path tracker for autonomous vehicles, Int. Journal of Systems Science, vol. 27, n. 8, pp. 799–806 (1996).MATHCrossRefGoogle Scholar
  12. 12.
    Gelb A.: Applied Optimal Estimation, The MIT Press (1986).Google Scholar
  13. 13.
    Kanade, T. and M. Okutomi: A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment, Internal Report CMU-CS-90–120, Carnegie Mellon University, Pittsburgh (1990).Google Scholar
  14. 14.
    Kelly A.: A 3D State Space Formulation of a Navigation Kalman Filter for Autonomous Vehicles, Technical Report CMU-RI-TR-94–19, Robotics Institute, CMU (1994).Google Scholar
  15. 15.
    Lee, J.W. and I. Kweon: Vehicle Segmentation Using Evidential Reasoning, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, pp. 880–885 (1997).Google Scholar
  16. 16.
    Ollero, A., A. García-Cerezo and J.L. Martinez: Fuzzy supervisory path tracking of autonomous vehicles, Control Engineering Practice, vol. 2, pp. 313–319 (1995).CrossRefGoogle Scholar
  17. 17.
    O11ero A., A. García-Cerezo, J.L. Martinez, and A. Mandow: Fuzzy Tracking Methods for Mobile Robots, Chapter 17 in Applications of fuzzy logic. Prentice Hall, Vol 9, pp. 347–364 (1997).Google Scholar
  18. 18.
    Rehg, J.M. and A.P. Witkin: Visual Tracking with Deformation Models, in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 44–850, Sacramento, CA, April (1991).Google Scholar
  19. 19.
    Rougeaux, S. and Y. Kuniyoshi: Robust Real-Time Tracking on an Active Vision Head, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, pp. 873–879 (1997).Google Scholar
  20. 20.
    Saffiotti A.: Fuzzy Logic in Autonomous Robotics: behavior coordination, Proceedings of the IEEE Int. Conf. on Fuzzy Systems, pp. 573–578, July 1997, Barcelona, Spain (1997).Google Scholar
  21. 21.
    Sanchez, O., A. Ollero and G. Heredia: Hierarchical Fuzzy Path Tracking and Velocity Control of Autonomous Vehicles. Integrated Computer-Aided Engineering, Vol. 6, no. 4, pp. 289–301 (1999).Google Scholar
  22. 22.
    Tomasi, C.: Shape and Motion From Image Streams: A Factorization Method, Ph.D. Thesis, Carnegie Mellon University (1991).Google Scholar
  23. 23.
    Wang, L.X.:Adaptive fuzzy systems and control. Prentice Hall. pp. 29–48 and 93–100. U.S.A. (1994).Google Scholar
  24. 24.
    Yager, R. and D. Filev: Essentials of fuzzy modeling and control. John Wiley and Sons, pp. 141–148. U.S.A. (1994).Google Scholar
  25. 25.
    Zhang, Z., R. Deriche, O. Faugeras and Q.T. Luong: A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry, Rapport de recherche No 2273, INRIA (1994).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Annibal Ollero
  • Joaquin Ferruz
  • Omar Sánchez
  • Guillermo Heredia

There are no affiliations available

Personalised recommendations