Advertisement

Map Generation by Co-operative Autonomous Robots Using Possibility Theory

  • Maite López-Sánchez
  • Ramon López de Màntaras
  • Carles Sierra
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 61)

Abstract

We treat the problem of generating maps of unknown office-like environments. Our approach is based on, first, a troop of low-cost autonomous robots that explore an indoor environment and, second, a host computer that receives the information gathered by the robots. The host uses this information to generate a global map of the environment.

Keywords

Mobile Robot Sensor Reading Autonomous Robot Real Robot Wall Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amat J., López de Màntaras R., and Sierra C.: Cooperative autonomous robots for exploring unknown environments. In Proceedings of the 4th International Symposium on Experimental Robotics (1995) 28–33Google Scholar
  2. 2.
    Betg-Brezetz S., Hbert P., Chatila R., and Devy M.: Uncertain map making in Natural Environments. In Proceedings of IEEE International Conference on Robotics and Automation (1996) 128–143Google Scholar
  3. 3.
    Broder A.Z., Karlin A.R., Raghavan P, and Upfal E.: Trading Space for Time in Undirected s-t Connectiviity. SIAM J. COMPUT. 23(2) (1994) 324–334MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brooks R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation RA 2(1) (1986) 14–23CrossRefGoogle Scholar
  5. 5.
    Chateauneuf A.: Combination of Compatible Belief functions and relation of specificity. In Advances in Dempster-Shafer Theory of Evidence, Wiley, New York (1994) 97–114Google Scholar
  6. 6.
    Dempster A.P.: Upper and lower probabilities induced by a multivalued mapping. In Annals of Mathematical Statistics, 38 (1967) 325–339Google Scholar
  7. 7.
    Dubois D. and Prade H.: Possibility Theory. Plenum Press, New York (1988).MATHCrossRefGoogle Scholar
  8. 8.
    Fabrizi E., G. Oriolo and G. Ulivi. Accurate map building via fusion of laser and ultrasonic range measures. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for Autonomous Vehicle Navigation, Physica-Verlag, Heidelberg, New York, 2000, pages 257–280.Google Scholar
  9. 9.
    Gasós J.: Integrating linguistic descriptions and sensor observations for the navigation of autonomous robots. In D. Driankov and A. Saffiotti, eds, Fuzzy Logic Techniques for Autonomous Vehicle Navigation, Physica-Verlag, Heidelberg, New York, 2000, pages 313–340.Google Scholar
  10. 10.
    Godo Ll., Lopez de Màntaras R.: Fuzzy Logic. In Encyclopedia of Computer Science and Technology. Marcel Dekker, Inc, Pennsylvania 29 (1993) 211–229Google Scholar
  11. 11.
    Gonzalez E., Suarez A., Moreno C. and Artigue F.: Complementary Regions: a surface filling algorithm. In Proceedings of IEEE International Conference on Robotics and Automation (1996) 909–914Google Scholar
  12. 12.
    Kim W. J., J. Hyup Ko and M. Jin Chung: Uncertain robot environment modelling using fuzzy numbers. Fuzzy Sets and Systems. 61 (1994) 53–62CrossRefGoogle Scholar
  13. 13.
    Kortenkamp D.M.: Cognitive maps for mobile robots: a representation for mapping and navigation. PhD dissertation, CS dept. University of Michigan (1993)Google Scholar
  14. 14.
    Levitt T.S. and Daryl T. Lawton: Qualitative navigation for mobile robots. In Artificial Intelligence 44 (1990) 305–360Google Scholar
  15. 15.
    Lim and Cho: Physically based sensor modeling for sonar map in specular environment. In Proceedings of IEEE International Conference on Robotics and Automation (1992) 1714–1719Google Scholar
  16. 16.
    López-Sánchez M., Lopez de Màntaras R. and Sierra C.: Incremental map generation by low cost robots based on Possibility/Necessity grids. In Proceedings of Uncertainty in Artificial Intelligence (1997) 351–357Google Scholar
  17. 17.
    López-Sánchez M., Esteva F., Lopez de Màntaras R., Sierra C., and Amat J.: Autonomous Robots Journal, Kluwer Academic Publishers, Nederlands (1998) 5 53–61Google Scholar
  18. 18.
    LôpezSánchez M., Lopez de Màntaras R., Sierra C.: Possibility theory-based environment modelling by means of behaviour-based autonomous robots. In Proceedings of the European Conference on Artificial Intelligence ECAI, Brighton, UK (1998) 590–594Google Scholar
  19. 19.
    Movarec H.P. and Elfes A.: High resolution maps from wide angle sonar. In Proceedings of IEEE International Conference on Robotics and Automation (1985) 116–121Google Scholar
  20. 20.
    Pagac D., Nebot E.M., and Durrant-White H.: An evidential approach to probabilistic map building. In Proceedings of IEEE International Conference on Robotics and Automation (1996) 745–750Google Scholar
  21. 21.
    Poloni M., Ulivi G. and Vendittelli M.: Fuzzy logic and autonomous vehicles: Experiments in ultrasonic vision. Fuzzy Sets and Systems. 69 (1995) 15–27CrossRefGoogle Scholar
  22. 22.
    Prescott T.J.: Spatial representation for navigation in animats. In Adaptive Behaviour 4(2) (1996)Google Scholar
  23. 23.
    Russell S.J., and Norving P.: Artificial Intelligence, a modern approach. Prentice Hall Ed., Chapter 25: Robotics (1995) 773–811Google Scholar
  24. 24.
    Saffiotti A.: The uses of Fuzzy Logic in Autonomous Robot Navigation: a catalogue raisonné. Soft Computing 1(4) (1997) . Online at http://www.aass.oru.se/Living/FLAR/.
  25. 25.
    Saffiotti A. and Wesley L.P. Perception-based self-localization using fuzzy locations. In: L. Dorst, M. van Lambalgen and F. Voorbraak, Eds. Reasoning with Uncertainty in Robotics. Lecture Notes in Artificial Intelligence 1093 (SpringerVerlag, Berlin, DE) (1996) 368–385.Google Scholar
  26. 26.
    Torra V.: A new combination Function in Evidence Theory. In International Journal of Intelligent Systems (IJIS) . 10 (12) (1995) 1021–1033CrossRefGoogle Scholar
  27. 27.
    Thrun S., Burgard W., and Fox D. A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots. In Machine Learning (Special Issue on Learning Robotics). 31 (1998) 29–53MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Maite López-Sánchez
  • Ramon López de Màntaras
  • Carles Sierra

There are no affiliations available

Personalised recommendations