Declarative Constrained Language for Semistructured Data

  • Mohand-Saïd Hacid
  • Farouk Toumani
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 7)


In this paper we consider how constraint-based technology can be used to query semistructured data. We present a formalism based on feature logics for querying semistructured data. The formalism is a hybrid one in the sense that it combines clauses with path constraints. The resulting language has a clear declarative and operational semantics.


Logic Program Regular Expression Query Language Predicate Symbol Path Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Abiteboul. Querying Semi-Structured Data. In Proceedings of the International Conference on Database Theory (ICDT’97), Delphi, Greece,pages 1–18,Janvier 1997.Google Scholar
  2. 2.
    S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query Language for Semistructured Data. International Journal on Digital Libraries1(1):68–88, 1997. Google Scholar
  3. 3.
    S. Abiteboul and V. Vianu. Regular Path Queries with Constraints. In Proceedings of PODS’97 Conference Tucson Arizonapages 122–133. ACM Press, May 1997. Google Scholar
  4. 4.
    H. Aït-Kaci. An Algebraic Semantics Approach to the Effective Resolution of Type Equations. Theoretical Computer Science, 45: 293–351, 1986.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    H. Ait-Kaci and R. Nasr. LOGIN: A Logic Programming Language with Built-in Inheritance. Journal of Logic Programming, 3 (3): 185–215, 1986.CrossRefGoogle Scholar
  6. 6.
    H. Aït-Kaci, A. Podelski, and G. Smolka. A Feature-Based Constraint System for Logic Programming witn Entailment. Theoretical Computer Science122:263–283, 1994. Google Scholar
  7. 7.
    R. Backofen. Regular Path Expressions in Feature Logic. Journal of Symbolic Computation, 17: 421–455, 1994.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and Optimization Techniques for Unstructured Data. In Proceedings of SIGMOD’96 Conference Montreal Canadapages 505–516, June 1996.Google Scholar
  9. 9.
    P. Buneman, W. Fan, and S. Weinstein. Path Constraints on Semistructured and Structured Data. In Proceedings of PODS’98, Seattle, Washington, pages 129–138. ACM Press, 1998.Google Scholar
  10. 10.
    H.-J. Bürckert. A Resolution Principle for Constrained Logics. Artificial Intelligence, 66: 235–271, 1994.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    R. Cattel. The Object Database Standard: ODMG-93. Morgan Kaufmann, San Mateo, CA, 1994.Google Scholar
  12. 12.
    C. Decleir, M.-S. Hacid, and J. Kouloumdjian. A Database Approach for Modeling and Querying Video Data. In In Proceedings of the 15th International Conference on Data Engineering (ICDE’99) Sydney Australiapages 6–13, Mar. 1999. Google Scholar
  13. 13.
    K. Govindarajan, B. Jayaraman, and S. Mantha. Optimization and Relaxation in Constraint Logic Languages. In In Proceedings of POPL’96 Conferencepages 91–103, 1996. Google Scholar
  14. 14.
    M. Höhfeld and G. Smolka. Definite relations over constraint languages. LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, Germany, Oct. 1988.Google Scholar
  15. 15.
    Y. Kanza, W. Nutt, and Y. Sagiv. Queries with Incomplete Answers over Semistructured Data. In Proceedings of PODS’99 Conference Philadelphia Pennsylvaniapages 227–236. ACM Press, May 1999. Google Scholar
  16. 16.
    R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A Formal System for Grammatical Representation. In J. Bresnan, editor The mental Representation of Grammatical Relationspages 173–381. MIT Press, Cambridge (MA), 1982 Google Scholar
  17. 17.
    D. Konopnicki and O. Shmueli. W3QS: A Query System for the World-Wide Web. In U. Dayal, P. M. D. Gray, and S. Nishio, editors, Proceedings of VLDB’95 Conference, Zurich, Switzerland, pages 54–65. Morgan Kaufmann, Sept. 1995.Google Scholar
  18. 18.
    L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. A Declarative Approach to Querying and Restructuring the World-Wide-Web. In In Proceedings of Post-ICDE Workshop on Research Issues in Data Engineering (RIDE’96) New Orleans USApages 12–21, Mar. 1996. Google Scholar
  19. 19.
    K. Mariott and P. Stuckey. Semantics of Constraint Logic Programs with Optimization. In ACM Lett. Program. Lang. Syste., volume 2, pages 197–212, 1993.Google Scholar
  20. 20.
    G. Mecca and A. J. Bonner. Sequences, Datalog and Transducers. In Proceedings of the 1995 Symposium on Principles of Database Systems (PODS’95) San Jose Californiapages 23–35, May 1995 Google Scholar
  21. 21.
    A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web. International Journal on Digital Libraries, 1 (1): 54–67, 1996.Google Scholar
  22. 22.
    S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from Semistructured Data. In L. M. Haas and A. Tiwary, editors Proceedings of SIGMOD’98 Conferencepages 295–306, Seattle, Washington, USA, June 1998. ACM Press. Google Scholar
  23. 23.
    R. L. Schwartz. Learning Perl. O’Reilly & Associates, Inc., 1993. Ch. Regular expressions.Google Scholar
  24. 24.
    S. M. Shieber. An Introduction to Unification-Based Approaches to Grammar. volume 4 of CSLI Lecture Notes. Center for the Study of Language and Information Stanford University1986. Google Scholar
  25. 25.
    G. Smolka. Feature Constraint Logics for Unification Grammars. Journal of Logic Programming, 12 (1–2): 51–87, 1992.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Mohand-Saïd Hacid
    • 1
  • Farouk Toumani
    • 2
  1. 1.Department of Computer SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Campus des CezeauxLIMOS-ISIMAAubiereFrance

Personalised recommendations