Advertisement

Flexible Querying of Structured Documents

  • Gloria Bordogna
  • Gabriella Pasi
Part of the Advances in Soft Computing book series (AINSC, volume 7)

Abstract

In this paper a flexible query language for expressing soft selection conditions on structured documents is presented and formalized within fuzzy set theory. Documents are represented as entities structured into logical sections in which the index terms play a distinct role. Users can indicate the preferred sections of documents, i.e., those which they estimate bearing the most interesting information, as well as quantify the number of sections which determine the global potential interest of the documents. A linguistic quantifier that specifies the approximate number of the sections in which the query terms should appear in the relevant documents expresses this last information.

Keywords

Query Language Query Term Aggregation Operator Information Retrieval System Index Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bookstein A. (1980) Fuzzy requests: an approach to weighted Boolean searches. J. of the American Society for Information Science 31, 240–247.CrossRefGoogle Scholar
  2. 2.
    Bordogna, G., Pasi, G. A. (1993) Fuzzy linguistic approach generalizing Boolean IR: a model and its evaluation. J. of the American Society for Information Science, 44 (2), 70–82.CrossRefGoogle Scholar
  3. 3.
    Bordogna G., Pasi G. (1995) Controlling retrieval through a user adaptive representation of documents, Int. J. of approximate reasoning 12, 317–339.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bordogna G., and Pasi G. (1995) Linguistic aggregation operators of selection criteria in fuzzy information retrieval, International Journal of Intelligent Systems, 10, 233–248.CrossRefGoogle Scholar
  5. 5.
    Buell D.A., and Kraft D.H. (1981) Threshold values and Boolean retrieval systems. Information Processing & Management 17, 127–136.MATHCrossRefGoogle Scholar
  6. 6.
    Kim H., Cho S., (2000), Structured storage and retrieval of SGML documents using GROVE, Information Processing and Management, 36, 643–657.CrossRefGoogle Scholar
  7. 7.
    Krovetz R., Croft W.B., (1992) Lexical ambiguity and information retrieval. ACM Trans. on Information System, (10)2, 115–141.CrossRefGoogle Scholar
  8. 8.
    Klir G.J., Folger T.A. (1988) Fuzzy sets, uncertainty and information, Prentice Hall PTR Englewood Cliffs.Google Scholar
  9. 9.
    Kraft, D. H., Bordogna, G. and Pasi, G. (1995) An extended fuzzy linguistic approach to generalize Boolean information retrieval, Journal of Information Sciences, Applications., 2 (3), 119–134.Google Scholar
  10. 10.
    Lalmas M., Ruthven I., (1998), Representing and retrieving structured documents using the Dempster-Shafer theory of evidence: Modelling and Evaluation, Journal of Documentation, 54 (5), 529–565.Google Scholar
  11. 11.
    Macleod I. (1990), Storage and retrieval of structured documents, Information Processing and Management, 26 (2), 197–208.CrossRefGoogle Scholar
  12. 12.
    Molinari, A., G. Pasi G. (1996) A fuzzy representation of HTML documents for information retrieval systems, in proc. of IEEE International Conference on Fuzzy Systems, New Orleans, 8–12 September, 1996.Google Scholar
  13. 13.
    Negoita, C. V. (1973) On the notion of relevance in information retrieval. Kybernetes, 2 (3), 161–165.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Paice, C. D. (1984) Soft evaluation of Boolean search queries in information retrieval systems. Information Technology: Research Development Applications, 3 (1), 33–41.Google Scholar
  15. 15.
    Perez-Carballo, J., Strzalkowski, T., (2000) Natural language information retrieval: Progress Report, Information Processing and Management, 36, 155–178.CrossRefGoogle Scholar
  16. 16.
    Rao A., et al. (2000) Query processing in TREC-6, Information Processing and Management, 36, 179–186.CrossRefGoogle Scholar
  17. 17.
    Sager N., (1981) Natural language information processing, Addison Wesley.Google Scholar
  18. 18.
    Salton, G., Fox, E., Wu, H. (1983) Extended Boolean information retrieval. Communications of the ACM, 26 (12), 1022–1036.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Salton G., and McGill M.J. (1984) Introduction to modern information retrieval. McGraw-Hill Int. Book Co.Google Scholar
  20. 20.
    Sparck Jones, K. A. (1971) Automatic keyword classification for information retrieval. London, England: Butterworths.Google Scholar
  21. 21.
    Sparck, K. A. (1972) A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28 (1), 11–20.CrossRefGoogle Scholar
  22. 22.
    van Rijsbergen, C. J. (1979) Information retrieval. London, England, Butterworths & Co., Ltd.Google Scholar
  23. 23.
    Yager R. R. (1988) On Ordered Weighted Averaging aggregation operators in multi criteria decision making, IEEE Trans. on Systems, Man and Cybernetics 18 (1), 183–190.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    The Ordered Weighted Averaging operators: theory and applications, R.R Yager and J. Kacprzyk eds., Kluwer Academic Publishers (1997).Google Scholar
  25. 25.
    Zadeh, L.A. (1965) Fuzzy sets. Information and control, 8, 338–353.MathSciNetMATHGoogle Scholar
  26. 26.
    Zadeh L.A. (1983) A computational approach to fuzzy quantifiers in natural languages, Computing and Mathematics with Applications. 9, 149–184.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Gloria Bordogna
    • 1
  • Gabriella Pasi
    • 1
  1. 1.Istituto per le Tecnologie Informatiche Multimediali CNR — MilanoItaly

Personalised recommendations