Advertisement

Specifying and Querying Database Repairs using Logic Programs with Exceptions

  • Marcelo Arenas
  • Leopoldo Bertossi
  • Jan Chomicki
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 7)

Abstract

Databases may be inconsistent with respect to a given set of integrity constraints. Nevertheless, most of the data may be consistent. In this paper we show how to specify consistent data and how to query a relational database in such a way that only consistent data is retrieved. The specification and queries are based on disjunctive extended logic programs with positive and negative exceptions that generalize those previously introduced by Kowalski and Sadri.

Keywords

Logic Program Belief Revision Integrity Constraint Nonmonotonic Reasoning Query Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.Google Scholar
  2. 2.
    S. Agarwal, A.M. Keller, G. Wiederhold, and K. Saraswat. Flexible Relation: An Approach for Integrating Data from Multiple, Possibly Inconsistent Databases. In IEEE International Conference on Data Engineering, 1995.Google Scholar
  3. 3.
    M. Arenas, L. Bertossi, and J. Chomicki. Scalar Aggregation in FD-Inconsistent Databases. Submitted to ICDT’01.Google Scholar
  4. 4.
    M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent Databases. In Proc. ACM Symposium on Principles of Database Systems (ACM PODS’99, Philadelphia), pages 68–79, 1999.Google Scholar
  5. 5.
    C. Barai, S. Kraus, J. Minker, and V.S. Subrahmanian. Combining Knowledge Bases Consisting of First-Order Theories. Computational Intelligence, 8: 45–71, 1992.CrossRefGoogle Scholar
  6. 6.
    R. Ben-Eliyahu and R. Dechter. Propositional Semantics for Disjunctive Logic Programs. Annals of Mathematics and Artificial Intelligence, 12: 53–87, 1994.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    F. Bry. Query Answering in Information Systems with Integrity Constraints. In IFIP WG 11.5 Working Conference on Integrity and Control in Information Systems. Chapman and Hall, 1997.Google Scholar
  8. 8.
    A. Celle and L. Bertossi. Querying Inconsistent Databases: Algorithms and Implementation. Submitted, 2000.Google Scholar
  9. 9.
    W. Chen and D. S. Warren. Computation of Stabe Models and its Integration with Logical Query Processing. IEEE Transactions on Data and Knowledege Engineering, 8 (5): 742–757, 1996.CrossRefGoogle Scholar
  10. 10.
    Phan Minh Dung. Integrating Data from Possibly Inconsistent Databases. In International Conference on Cooperative Information Systems, Brussels, Belgium, 1996.Google Scholar
  11. 11.
    O.M. Duschka, M.R. Genesereth, and A.Y. Levy. Recursive Query Plans for Data Integration. Journal of Logic Programming, 2000.Google Scholar
  12. 12.
    T. Eiter and G. Gottlob. On the Complexity of Propositional Knowledge Base Revision, Updates, and Counterfactuals. Artificial Intelligence, 57 (2–3): 227–270, 1992.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactons on Database Systems, 22 (3): 364–418, 1997.CrossRefGoogle Scholar
  14. 14.
    T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The Knowledge Representation System DVL: Progress Report, Comparisons, and Benchmarks. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, KR98, Trento, Italy, June 1998. Morgan Kaufman, 1998.Google Scholar
  15. 15.
    F. Faber, N. Leone, and G. Pfeifer. Pushing Goal Derivation in DLP Computations. In Proceedings of the 5rd Logic Programming and Non-Monotonic Reasoning Conference, LPNMR99. LNAI, Springer-Verlag, El Paso, Texas, December 2–4, 1999.Google Scholar
  16. 16.
    M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs. In Proc. Fifth International Conference and Symposium on Logic Programming, volume 2, pages 1070–1080. MIT Press, 1988.Google Scholar
  17. 17.
    M. Gelfond and V. Lifschitz. Logic Programs with Classical Negation. In Proc. Seventh International Logic Programming Conference, pages 579–597. MIT Press, 1990.Google Scholar
  18. 18.
    M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing, 9: 365–385, 1991.CrossRefGoogle Scholar
  19. 19.
    M. Gertz. Diagnosis and Repair of Constraint Violations in Database Systems. PhD thesis, Universität Hannover, 1996.Google Scholar
  20. 20.
    H. Katsuno and A. O. Mendelzon. A Unified View of Propositional Knowledge Base Updates. In International Joint Conference on Artificial Intelligence, 1989.Google Scholar
  21. 21.
    R. Kowalski and F. Sadri. Logic Programs with Exceptions. New Generation Computing, 9: 387–400, 1991.CrossRefGoogle Scholar
  22. 22.
    R. Kowalski, F. Sadri, and F. Toni. The Role Of Abduction in Logic Programming. In Handbbok of Logic in Artificial Intelligence and Logic Programming, Vol. 5, pages 235–266. Oxford University Press, 1998.Google Scholar
  23. 23.
    N. Leone, P. Rullo, and F. Scarcello. Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics and Computation. Information and Computation, 135 (2): 69–112, 1997.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    J. Lin and A. O. Mendelzon. Merging Databases under Constraints. International Journal of Cooperative Information Systems, 7 (1): 55–76, 1996.CrossRefGoogle Scholar
  25. 25.
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.Google Scholar
  26. 26.
    I. Niemela and P. Simons. Smodels - An Implementation of the Stable and Well-founded Semantics for Normal Logic Programs. In Proc. 4th Intenational Conference on Logic Programming and Nonmonotonic Reasoning, pages 420–429. Springer. Lecture Notes in Artificial Intelligence 1265, 1997.Google Scholar
  27. 27.
    S. Pimentel and W. Rodi. Belief Revision and Paraconsistency in a Logic Programming Framework. In Proc. Conf. Logic Programming and Nonmonotonic Reasoning, pages 228–242, 1991.Google Scholar
  28. 28.
    K. Sagonas, T. Swift, and D.S. Warren. XSB as an Efficient Deductive Database Engine. In Proc. ACM SIGMOD, 1994.Google Scholar
  29. 29.
    K. Satoh. Nonmonotonic Reasoning by Minimal Belief Revision. In International Conference on Fifth Generation Computer Systems, pages 455–462, 1988.Google Scholar
  30. 30.
    J. Ullman. Principles of Database and Knowledge-Base Systems, Vol. I. Computer Science Press, 1988.Google Scholar
  31. 31.
    J. D. Ullman. Information Integration Using Logical Views. In International Conference on Database Theory. Springer-Verlag, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Marcelo Arenas
    • 1
  • Leopoldo Bertossi
    • 1
  • Jan Chomicki
    • 2
  1. 1.Departamento de Ciencia de ComputacionPontificia Universidad Catolica de ChileSantiago 22Chile
  2. 2.Dept. of Computer ScienceMonmouth UniversityUSA

Personalised recommendations