Advertisement

Ontology-Based Querying

  • Troels Andreasen
  • Jørgen Fischer Nilsson
  • Hanne Erdman Thomsen
Part of the Advances in Soft Computing book series (AINSC, volume 7)

Abstract

This paper introduces to the main objectives of the OntoQuery project, with the agenda of developing theories and methodologies for content-based retrieval from text databases. Content-based retrieval is obtained through descriptions of database objects and queries derived from natural language analysis and shaped with respect to a domain specific ontology, which in turn is expressed in a formal description language. Querying is performed by comparing descriptions and, during this, reasoning with the domain knowledge expressed in the ontology.

Keywords

Noun Phrase Semantic Relation Query Evaluation Text Database Natural Language Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Andreasen, Flexible Database Querying based on Associations of Domain Values. In ISMIS’97, Eight International Symposium on Methodologies for INTELLIGENT SYSTEMS. Charlotte, North Carolina. Springer Verlag, Lecture Notes in Artificial Intelligence, 1997.Google Scholar
  2. 2.
    N. Bel, F. Busa, N. Calzolari, E. Gola, A. Lenci, M. Monachini, A. Ogonowski, I. Peters, W. Peters, N. Ruimy, M. Villegas (2000). ‘SIMPLE - A General Framework for the Development of Multilingual Lexicons, Second International Conference on Language Resources amd Evaluation, Athens, Greece.Google Scholar
  3. 3.
    T. Brauner, J. Fischer Nilsson and A. Rasmussen: Conceptual Graphs as Algebras — with an Application to Analogical Reasoning, in Proceedings of the 7th Int. Conf. on Conceptual Structures, Blacksburg, Virginia, July 1999, W. Tepfenhart and W. Cyre (eds.) Lecture Notes in Artificial Intelligence LNAI 1640, Springer, 1999.Google Scholar
  4. 4.
    C. Brink, K. Britz, and R.A. Schmidt: Peirce Algebras, Formal Aspects of Computing, Vol. 6, 1994, pp. 339–358.MATHCrossRefGoogle Scholar
  5. P. Anker Jensen et al. (eds.) Proceedings of the International OntoQuery Workshop Ontology-based interpretation of NP’s,January 17 and 18, 2000, forthcoming, see www.ontoquery.dk.Google Scholar
  6. 6.
    P. Anker Jensen, J. Fischer Nilsson and C. Vikner, Towards an Ontology-based Interpretation of NP’s, in [5].Google Scholar
  7. 7.
    H. Legind Larsen and J. Fischer Nilsson, Fuzzy querying in a concept object algebraic datamodel, in T. Andreasen et al. (eds.), Flexible Query Answering Systems, Kluwer, 1997.Google Scholar
  8. 8.
    H.L. Larsen, T. Andreasen and H. Christiansen: Knowledge Discovery for Flexible Querying. In T. Andreasen et al. (eds.), Proceedings of the International Conference on Flexible Query Answering Systems, 11–15 May 1998, Roskilde, Denmark. Lecture Notes in Artificial Intelligence, Springer Verlag, Berlin. 1998.Google Scholar
  9. 9.
    A. Lascarides and A. Copestake: “Default Representation in Constraint-Based Frameworks”. In: Computational Linguistics, vol. 25,1, 1999. pp. 55–106Google Scholar
  10. 10.
    B. Nistrup Madsen, H. Erdman Thomsen and C. Vikner: ‘The project “Computer-Aided Ontology Structuring” (CAOS)’. In: World Knowledge and Natural Language Analysis. Copenhagen Studies of Language, vol. 23, Copenhagen: Samfundslitteratur, 1999.Google Scholar
  11. 11.
    B. Nistrup Madsen, B. Sandford Pedersen and H. Erdman Thomsen, Defining Semantic Relations for OntoQuery, in [5].Google Scholar
  12. 12.
    J. Fischer Nilsson: A Logico-Algebraic Framework for Ontologies, in [5].Google Scholar
  13. 13.
    P. Paggio: “Parsing in OntoQuery - Experiments with LKB”, in [5].Google Scholar
  14. 14.
    W. C. Rounds, Feature Logics, in J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, North-Holland, 1997.Google Scholar
  15. 15.
    J. F. Sowa,: Knowledge Representation - Logical, Philosophical, and Computational Foundations. Brooks/Cole, London, 2000.Google Scholar
  16. 16.
    R.R. Yager.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18 (1), pp. 183–190, 1988.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Troels Andreasen
    • 1
  • Jørgen Fischer Nilsson
    • 2
  • Hanne Erdman Thomsen
    • 3
  1. 1.Roskilde UniversityRoskildeDenmark
  2. 2.Technical University of DenmarkLyngbyDenmark
  3. 3.Copenhagen Business SchoolCopenhagenDenmark

Personalised recommendations