Skip to main content

Dynamic Recognition States for Chaotic Neural Networks

  • Conference paper
Developments in Soft Computing

Part of the book series: Advances in Soft Computing ((AINSC,volume 9))

  • 135 Accesses

Abstract

Chaos offers several advantages to the Engineer over other non-chaotic dynamics. One is that chaotic systems are often significantly easier to control than other linear or non-linear systems, requiring only small, appropriately timed perturbations to constrain them within specific Unstable Periodic Orbits (UPOs). Another is that chaotic attractors contain an infinite number of these UPOs. If individual UPOs can be made to represent specific internal states of a system, then a chaotic attractor can be turned into an infinite state machine. In this paper we investigate this possibility with respect to chaotic neural networks. We present a method by which a network can self-select UPOs in response to specific input values. These UPOs correspond to network recognition states for these input values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ditto, W.L., Rauseo, S.N. and Spano, M.L. (1990). Experimental control of chaos. Physical Review Letters 65, 3211–3214.

    Article  Google Scholar 

  • Freeman, W.J. (1985). Strange attractors in the olfactory system of rabbits. Electroencephalography And Clinical Neurophysiology 61, 5155–5155

    Google Scholar 

  • Freeman, W.J. (1994). Neural networks and chaos. J.Theor.Biol. 171, 13–18.

    Article  Google Scholar 

  • Garfinkel, A., Spano, M.L., Ditto, W.L. and Weiss, J.N. (1992). Controlling cardiac chaos. Science 257, 1230–1235.

    Article  Google Scholar 

  • Guevara, M.R., Glass, L., Mackey, M.C. and Shrier, A. (1983). Chaos in neurobiology. IEEE Transactions on systems, man and cybernetics SMC-13, 790–798.

    Google Scholar 

  • Hebb, D.O. (1948). The Organization of Behaviour: A Neurophysiological Theory,John Wileym New York.

    Google Scholar 

  • Kittel, A., Popp, M., Parisi, J. and Pyragas, K. (1996) Control of Chaos by Self-Adapted Delayed Feedback. Lect. Notes Phys. 976: 239 — 247.

    Google Scholar 

  • Lorenz, E.N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–41.

    Article  Google Scholar 

  • Lourenco C. and Babloyantz A. (1996). Control of spatiotemporal chaos in neuronal networks. Int.J.Neural Syst. 7, 507–517.

    Article  Google Scholar 

  • Olde Scheper, T. (1995) Application of Chaos analysis on patient EEG. 1995. University of Utrecht. 9–30–1995. Ref Type: Thesis/Dissertation

    Google Scholar 

  • Pyragas, K. (1992). Continuous control of chaos by self-controlling feedback. Phys. Lett., 170A, 421–428.

    Article  Google Scholar 

  • Rössler, O.E. (1976). Phys. Lett. A 57397.

    Google Scholar 

  • Shinbrot, T., Ditto, W.L., Grebogi, C., Ott, E., Spano, M.L. and Yorke, J.A. (1992). Using the sensitive dependence of chaos (the “butterfly effect”) to direct trajectories in an experimental chaotic system. Physical Review Letters 68, 2863–2866.

    Article  MathSciNet  MATH  Google Scholar 

  • Shinbrot, T., Grebogi, C., Ott, E. and Yorke, J.A. (1993). Using small perturbations to control chaos. Nature 363, 411–417.

    Article  Google Scholar 

  • Tsuda, I., Koerner, E. and Shimizu, H. (1987). Memory dynamics in asynchronous neural networks. Progress Of Theoretical Physics 78, 51–71.

    Article  Google Scholar 

  • Tsuda, I. (1992). Dynamic link of memory - chaotic memory map in nonequilibrium neural networks. Neural Networks 5, 313–326.s

    Google Scholar 

  • Tsuda, I. (1996). A new-type of self-organization associated with chaotic dynamics in neural networks. International Journal Of Neural Systems 7, 451–459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crook, N., Scheper, T.O. (2001). Dynamic Recognition States for Chaotic Neural Networks. In: John, R., Birkenhead, R. (eds) Developments in Soft Computing. Advances in Soft Computing, vol 9. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1829-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1829-1_8

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1361-6

  • Online ISBN: 978-3-7908-1829-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics