Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 68))

Abstract

Data mining is the central step in a process called knowledge discovery in databases, namely the step in which modeling techniques are applied. Several research areas such as statistics, artificial intelligence, machine learning, and soft computing have contributed to the arsenal of methods for data mining. In this paper, however, we focus on neuro-fuzzy methods for rule learning. In our opinion, fuzzy approaches can play an important role in data mining, because they provide comprehensible results. This goal often seems to be neglected — possibly because comprehensibility is sometimes hard to achieve with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Berry, M. J. A., G. Linoff, and S. Gordon (1997). Data Mining Techniques: For Marketing, Sales and Customer Support, New York, Chichester et. al.: John Wiley & Sons.

    Google Scholar 

  2. Berthold, M., and Huber, K.-P. (1998). Tolerating Missing Values in a Fuzzy Environment, In: Mares et al. (eds.), Proc. Seventh International Fuzzy Systems Association World Congress IFSA’97, I: 359–362, Academia, Prague.

    Google Scholar 

  3. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, Ca.

    MATH  Google Scholar 

  4. Chi, Z., and Yan, H. (1996). ID3-derived fuzzy rules and optimal defuzzification for handwritten numeral recognition. IEEE Trans. Fuzzy Systems, 4 (1): 24–31.

    Article  Google Scholar 

  5. Dempster, A.P., and Laird, N.M., and Rubin, D.B. (1997). Maximum Likelihood from Incomplete Data via the EM algorithm, Journal of the Royal Statistic Society, Series B, 39 (1): 1–38.

    MathSciNet  Google Scholar 

  6. Dubois, D., Prade, H., and Yager, R.R. (1996). Information Engineering and Fuzzy Logic. Proc. 5th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’96, New Orleans, LA, USA), 1525–1531. IEEE Press, Piscataway, NJ, USA.

    Book  Google Scholar 

  7. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. eds. (1996). Advances in Knowledge Discovery and Data Mining. MIT Press, Menlo Park, CA, USA.

    Google Scholar 

  8. Finno, W., Hergert, F., and Zimmermann, H. G. (1992). Improving Generalization by Nonconvergent Model Selection Methods. Neural Networks 6.

    Google Scholar 

  9. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.

    Google Scholar 

  10. Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. (1998). Multivariate Data Analysis, Fifth Edition, Prentice-Hall,Upper Saddle River, NJ.

    Google Scholar 

  11. Halgamuge, S. K., and M. Glesner (1994). Neural networks in designing fuzzy systems for real world applications. Fuzzy Sets and Systems 65: 1–12.

    Article  Google Scholar 

  12. Halgamuge, S. K., Mari, A., and Glesner, M. (1994). Fast Perceptron Learning by Fuzzy Controlled Dynamic Adaption of Network Parameters, In: Kruse, R., Gebhardt, J. and Palm, R. (eds.), Fuzzy Systems in Computer Science, pp. 129–139, Vieweg, Braunschweig.

    Chapter  Google Scholar 

  13. Halgamuge, S. K. (1995). Advanced Methods for Fusion of Fuzzy Systems and Neural Networks in Intelligent Data Processing, PhD Thesis, Technische Hochschule Darmstadt.

    Google Scholar 

  14. Haykin, S. (1994). Neural Networks, Prentice-Hall Inc., New Jersey.

    MATH  Google Scholar 

  15. Hopf, J., and Klawonn, F. (1994). Learning the Rule Base of a Fuzzy Controller by a Genetic Algorithm, In: Kruse, R., Gebhardt, J. and Palm, R. (eds.), Fuzzy Systems in Computer Science, pp. 63–73, Vieweg, Braunschweig.

    Chapter  Google Scholar 

  16. Höppner, F., Klawonn, F., and R. Kruse (1999). Fuzzy Clusteranalysis. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  17. Ishibuchi, H., Morioka, K., and Turksen, I. B. (1995). Learning by Fuzzified Neural Networks, Int. J. Approximate Reasoning, 13 (4), pp. 327–358.

    Article  MATH  Google Scholar 

  18. Jäkel, J., Gröll, L., and Mikut, R. (1999). Automatic generation and evaluation of interpretable rule bases for fuzzy systems. In Computational Intelligence for Modelling, Control and Automation CIMCA’99, pages 1922–197. IOS Press, Amsterdam.

    Google Scholar 

  19. Kinzel, J., Klawonn, F., and Kruse, R. (1994). Modifications of Genetic Algorithms for Designing and Optimizing Fuzzy Controllers, In: Proc. IEEE Conference on Evolutionary Computation, pp. 28–33, IEEE, Orlando, FL.

    Google Scholar 

  20. Klawonn, F., and R. Kruse (1997). Constructing a Fuzzy Controller from Data. Fuzzy Sets and Systems, 85: 177–193.

    Article  MathSciNet  Google Scholar 

  21. Klose, A., Nürnberger, A., and Nauck, D. (1998). Some Approaches to Improve the Interpretability of Neuro-Fuzzy Classifiers, In: Proc. 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT98), pp. 629–633, Aachen.

    Google Scholar 

  22. Klose, A., Nauck, D., Schulz, K., and Thönnessen, U. (1999). Learning a Neuro-Fuzzy Classifier from Unbalanced Data in a Machine Vision Domain, In: Fuzzy-Neuro Systems 1999–Computational Intelligence (FNS’99), pp. 23–32, G. Brewka, R. Der, S. Gottwald, and A. Schierwagen, Leipziger Universitätsverlag, Leipzig.

    Google Scholar 

  23. Kruse, R., Borgelt, C., and Nauck, D. (1999). Fuzzy Data Analysis: Challenges and Perspectives. Proc. 8th IEEE International Conference on Fuzzy Systems (FUZZ.-IEEE’99, Seoul, Korea). IEEE Press, Piscataway, NJ, USA.

    Google Scholar 

  24. Kruse, R., Gebhardt, J., and Klawonn, F. (1994). Foundations of Fuzzy Systems, John Wiley & Sons, Inc., New York, Chichester.

    Google Scholar 

  25. Lee, M. and Takagi, H. (1993). Integrating Design Stages of Fuzzy Systems Using Genetic Algorithms, In: Proc. IEEE Int. Conf. on Fuzzy Systems 1993, pp. 612–617, San Francisco.

    Google Scholar 

  26. Maher, P. E., and St. Clair, D., (1993). Uncertain reasoning in an ID3 machine learning framework. In Proc. 2nd IEEE Int. Conf. on Fuzzy Systems, pages 7–12, San Francisco.

    Google Scholar 

  27. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  28. Mitchell, T. M. (1997). Machine Learning, McGraw-Hill, New York, NY.

    Google Scholar 

  29. Narazaki, H., and Ralescu, A. L. (1991). A Synthesis Method for Multi-Layered Neural Network Using Fuzzy Sets, In: Proc. of IJCAI-91: Workshop on Fuzzy Logic in Artificial Intelligence, pp. 54–66, Sydney.

    Google Scholar 

  30. Nauck, D., and Kruse, R. (1992). Interpreting Changes in the Fuzzy Sets of a Self-Adaptive Neural Fuzzy Controller, In: Proc. Second Int. Workshop on Industrial Applications of Fuzzy Control and Intelligent Systems (IFIS’92), pp. 146–152, College Station, Texas.

    Google Scholar 

  31. Nauck, D., and Kruse, R. (1994). Choosing Appropriate Neuro-Fuzzy Models, In: Proc. Second European Congress on Fuzzy and Intelligent Technologies (EUFIT’94), pp. 552–557, Verlag und Druck Mainz, Aachen.

    Google Scholar 

  32. Nauck, D., Klawonn, F., and Kruse, R. (1997). Foundations of Neuro-Fuzzy Systems. John Wiley & Sons Inc., New York.

    Google Scholar 

  33. Nauck, D., and Kruse, R. (1999). Fuzzy Classification Rules Using Categorical and Metric Variables, In: Proc. 6th Int. Workshop on Fuzzy-Neuro Systems 1999 (FNS’99), pp. 133–144, Leipziger Universitätsverlag, Leipzig.

    Google Scholar 

  34. Nauck, D., Nauck, U., and Kruse, R. (1999). NEFCLASS for JAVA–New Learning Algorithms, In: Proc. 18th International Conf. of the North American Fuzzy Information Processing Society (NAFIPS’99), pp. 472–476, IEEE, New York, NY.

    Google Scholar 

  35. Nürnberger, A., Klose, A., and Kruse, R. (2000). Analyzing Borders Between Partially Contradicting Fuzzy Rules. In Proc. of the 19th International Conference of the North American Fuzzy Information Processing Society (NAFIPS’2000), NAFIPS, Atlanta.

    Google Scholar 

  36. Nürnberger, A., Klose, A., and Kruse, R. (1999). Discussing Cluster Shapes of Fuzzy Classifiers. In Proc. of the 18th International Conference of the North American Fuzzy Information Processing Society (NAFIPS’99), NAFIPS, New York, June 10–12.

    Google Scholar 

  37. Quinlan, J. R. (1993). C4. 5: Programs for Machine Learning, Morgan Kaufman, San Mateo, CA.

    Google Scholar 

  38. Scharf, R., Schwan, H., and Thönnessen, U. (1998). Reconnaissance in SAR Images,In: Proc. of the European Conference on Synthetic Aperture Radar, Berlin, Offenbach, pp. 343–346.

    Google Scholar 

  39. Schwan, H., Schärf R., and Thönnessen, U. (1998). Reconnaissance of extended targets in SAR image data, In: Proc. of the European Symposium on Remote Sensing, Barcelona, September 21th-24th.

    Google Scholar 

  40. Siekmann, S., Kruse, R., Neuneier, R. and Zimmermann, H. G. (1997). Advanced Neuro-Fuzzy Techniques Applied to the German Stock Index DAX, In: Proc. Second European Workshop on Fuzzy Decision Analysis and Neural Networks for Management, Planning, and Optimization (EFDAN’97), pp. 170–179, Dortmund.

    Google Scholar 

  41. Stilla, U., Michaelsen, E., and Lütjen, K. (1996). Automatic Extraction of Buildings from Aerial Images, Mapping Buildings, Roads and other Man-Made Structures from Images, Leberl F, Kalliany R, Gruber M (eds.), Proceedings IAPR-TC7 Workshop, Graz, pp. 229–244, R. Oldenbourg, München.

    Google Scholar 

  42. Takagi, H., and Lee, M. (1993). Neural Networks and Genetic Algorithms, In: Fuzzy Logic in Artificial Intelligence (FLAI93), pp. 68–79, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  43. Wang, C.-H., Liu, J.-F., Hong, T.-P., and Tseng, S.-S. (1999). A fuzzy inductive learning strategy for modular rules. Fuzzy Sets and Systems, 103: 91–105.

    Article  Google Scholar 

  44. Wang, L., and Mendel, J. M. (1992). Generating fuzzy rules by learning from examples, IEEE Trans. Syst., Man, Cybern., 22 (6): 1414–1427.

    Article  MathSciNet  Google Scholar 

  45. Yuan, Y., and Shaw, M. J. (1995). Induction of fuzzy decision trees. Fuzzy Sets and Systems, 69 (2): 125–139.

    Article  MathSciNet  Google Scholar 

  46. Zadeh, L. (1973). Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. SMC, SMC-3 (1), January, 1973, pp. 28–44.

    MathSciNet  Google Scholar 

  47. Zimmermann, H. G., and Weigend, A. (1996). A new architecture for time series analysis, NNCM.

    Google Scholar 

  48. Zimmermann, H. G., Neuneier, R., Dichtl, H., and Siekmann, S. (1996). Modeling the German Stock Index DAX with Neuro-Fuzzy, In: Proc. Fourth European Congress on Intelligent Techniques and Soft Computing (EUFIT’96), Verlag and Druck Mainz, Aachen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klose, A., Nürnberger, A., Nauck, D., Kruse, R. (2001). Data Mining with Neuro-Fuzzy Models. In: Kandel, A., Last, M., Bunke, H. (eds) Data Mining and Computational Intelligence. Studies in Fuzziness and Soft Computing, vol 68. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1825-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1825-3_1

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2484-1

  • Online ISBN: 978-3-7908-1825-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics