Advertisement

Rough Sets and Boolean Reasoning

  • Andrzej Skowron
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 70)

Abstract

In recent years we witness a rapid growth of interest in rough set theory and its applications, worldwide. The theory has been followed by the development of several software systems that implement rough set operations, in particular for solving knowledge discovery and data mining tasks. Rough sets are applied in domains, such as, for instance, medicine, finance, telecommunication, vibration analysis, conflict resolution, intelligent agents, pattern recognition, control theory, signal analysis, process industry, marketing, etc.

We introduce basic notions and discuss methodologies for analyzing data and surveys some applications. In particular we present applications of rough set methods for feature selection, feature extraction, discovery of patterns and their applications for decomposition of large data tables as well as the relationship of rough sets with association rules. Boolean reasoning is crucial for all the discussed methods.

We also present an overview of some extensions of the classical rough set approach. Among them is rough mereology developed as a tool for synthesis of objects satisfying a given specification in a satisfactory degree. Applications of rough mereology in such areas like granular computing, spatial reasoning and data mining in distributed environment are outlined.

Keywords

Feature Selection Feature Extraction Association Rule Vibration Analysis Intelligent Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agotnes, T., Komorowski, J., Loken, T. (1999) Taming large rule models in rough set approaches. Proceedings of the 3rd European Conference of Principles and Practice of Knowledge Discovery in Databases, September 15–18, 1999, Prague, Czech Republic, Lecture Notes in Artificial Intelligence 1704, SpringerVerlag, Berlin, 193–203Google Scholar
  2. 2.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkano, A. (1996) Fast discovery of association rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth P., Uthurusamy R. (Eds.), Advances in Knowledge Discovery and Data Mining, The AAAI Press/The MIT Press, 307–328Google Scholar
  3. 3.
    Bazan, J.G. (1998) A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision system. In: [49], 321–365Google Scholar
  4. 4.
    Brown, F.M. (1990) Boolean Reasoning. Kluwer Academic Publishers, DordrechtMATHCrossRefGoogle Scholar
  5. 5.
    Cattaneo, G. (1998) Abstract approximation spaces for rough theories. In: [49], 59–98MathSciNetGoogle Scholar
  6. 6.
    Cios, J., Pedrycz, W., Swiniarski, R.W. (1998) Data Mining in Knowledge Discovery. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. 7.
    Czyzewski, A. (1998) Soft processing of audio signals. In: [50], 147–165Google Scholar
  8. 8.
    Deogun, J., Raghavan, V., Sarkar, A., Sever, H. (1997) Data mining: Trends in research and development. In: [24], 9–45Google Scholar
  9. 9.
    Dougherty, J., Kohavi, R., Sahami, M. (1995) Supervised and unsupervised discretization of continuous features. In: Proceedings of the Twelfth International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CAGoogle Scholar
  10. 10.
    Duentsch, I., Gediga, G. (1997) Statistical evaluation of rough set dependency analysis. International Journal of Human-Computer Studies 46, 589–604CrossRefGoogle Scholar
  11. 11.
    Duentsch, I., Gediga, G. (2000) Rough set data analysis. In: Encyclopedia of Computer Science and Technology, Marcel Dekker (to appear )Google Scholar
  12. 12.
    Friedman, J., Kohavi, R., Yun, Y. (1996) Lazy Decision Trees. Proceedings of AAAI-96, 717–724Google Scholar
  13. 13.
    Fayyad, U., Piatetsky-Shapiro, G. (Eds.) (1996) Advances in knowledge discovery and data mining. MIT/AAAI Press, Menlo ParkGoogle Scholar
  14. 14.
    Greco, S., Matarazzo, B., Slowinski, R. (1998) Rough Approximation of a Preference Relation in a Pairwise Comparison Table. In: [50], 13–36Google Scholar
  15. 15.
    Chmielewski, M.R., Grzymala -Busse, J.W. (1994) Global discretization of attributes as preprocessing for machine learning. Proceedings of the Third International Workshop on Rough Sets and Soft Computing (RSSC’94), San Jose State University, San Jose, California, USA, November 10–12, 294–301Google Scholar
  16. 16.
    Grzymala-Busse, J.W. (1998) Applications of the rule induction system LERS. In: [49], 366–375Google Scholar
  17. 17.
    Huber, P.J. (1981) Robust statistics. Wiley, New YorkMATHCrossRefGoogle Scholar
  18. 18.
    Komorowski, J., Zytkow, J. (Eds.) (1997) The First European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD’97). June 25–27, Trondheim, Norway, Lecture Notes in Artificial Intelligence 1263, SpringerVerlag, Berlin, 1–396Google Scholar
  19. 19.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A. (1999) Rough sets: A tutorial. In: S.K. Pal and A. Skowron (Eds.), Rough-Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 3–98Google Scholar
  20. 20.
    Kowalczyk, K. (1998) Rough data modelling, A new technique for analyzing data. In: [49], 400–421Google Scholar
  21. 21.
    Krawiec, K, Slowinski, R., Vanderpooten, D. (1998) Learning decision rules from similarity based rough approximations. In: [50], 37–54Google Scholar
  22. 22.
    Kryszkiewicz, M. (1997) Generation of rules from incomplete information systems. In: [18] 156–166Google Scholar
  23. 23.
    Langley, P., Simon, H.A., Bradshaw, G.L., Zytkow, J.M. (1987) Scientific Discovery, Computational Explorations of the Creative Processes. The MIT Press, Cambridge, MassachusettsGoogle Scholar
  24. 24.
    Lin, T.Y., Cercone, N. (Eds.) (1997) Rough Sets and Data Mining. Analysis of Imprecise Data. Kluwer Academic Publishers, BostonMATHGoogle Scholar
  25. 25.
    Lin, T.Y. (1989) Granular computing on binary relations I, II. In: [49], 107–140Google Scholar
  26. 26.
    Marek, V.M., Truszczynski, M. (1999) Contributions to the theory of rough sets. Fundamenta Informaticae 39 (4), 389–409MathSciNetMATHGoogle Scholar
  27. 27.
    Michie, D., Spiegelhalter, D.J., Taylor, C.C. (Eds.) (1994) Machine learning, Neural and Statistical Classification. Ellis Horwood, New YorkMATHGoogle Scholar
  28. 28.
    Mitchell, T.M. (1997) Machine Learning. Mc Graw-Hill, PortlandMATHGoogle Scholar
  29. 29.
    Mollestad, T., Komorowski, J. (1998) A Rough Set Framework for Propositional Default Rules Data Mining. In: S.K. Pal and A. Skowron (Eds.), Rough - fuzzy hybridization: New trend in decision making, Springer-Verlag, SingaporeGoogle Scholar
  30. 30.
    Nguyen, H.S. (1997) Discretization of Real Value Attributes, Boolean Reasoning Approach. Ph.D. Dissertation, Warsaw UniversityGoogle Scholar
  31. 31.
    Nguyen, H.S. (1999) Efficient SQL-learning Method for Data Mining in Large Data Bases. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI’99), 806–811Google Scholar
  32. 32.
    Nguyen, S.H. (2000) Data regularity analysis and applications in data mining. Ph.D. Dissertation, Warsaw UniversityGoogle Scholar
  33. 33.
    Nguyen, H.S., Nguyen, S.H. (1998) Pattern extraction from data. Fundamenta Informaticae 34, 129–144MathSciNetMATHGoogle Scholar
  34. 34.
    Nguyen, H.S., Nguyen, S.H. (1999) Rough sets and association rule generation. Fundamenta Informaticae 40/4 383–405Google Scholar
  35. 35.
    Nguyen, S.H., Skowron, A., Synak, P. (1998) Discovery of data patterns with applications to decomposition and classification problems. In: [50], 55–97Google Scholar
  36. 36.
    Orlowska, E. (Ed.) (1998) Incomplete Information, Rough Set Analysis. Physica-Verlag, HeidelbergGoogle Scholar
  37. 37.
    Pal, S.K., Skowron, A. (Eds.) (1999) Rough-fuzzy hybridization: New trend in decision making. Springer-Verlag, SingaporeMATHGoogle Scholar
  38. 38.
    Paun, G., Polkowski, L., Skowron, A. (1996) Parallel communicating grammar systems with negotiations. Fundamenta Informaticae 28/3–4, 315–330Google Scholar
  39. 39.
    Pawlak, Z. (1981) Information systems–theoretical foundations. Information Systems 6, 205–218MATHCrossRefGoogle Scholar
  40. 40.
    Pawlak, Z. (1982) Rough sets. International Journal of Computer and Information Sciences 11, 341–356MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Pawlak, Z. (1991) Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, DordrechtMATHGoogle Scholar
  42. 42.
    Pawlak, Z., Skowron, A. (1999) Rough set rudiments. Bulletin of the International Rough Set Society 3/4, 181–185Google Scholar
  43. 43.
    Piasta, Z., Lenarcik, A. (1998) Rule induction with probabilistic rough classifiers. Machine Learning (to appear)Google Scholar
  44. 44.
    Polkowski, L., Tsumoto, S., Lin, T.Y. (Eds.) Rough Sets: New Developments. Physica-Verlag, Heidelberg (2000) (in print)Google Scholar
  45. 45.
    Polkowski, L., Skowron, A. (1996) Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15/4, 333–365Google Scholar
  46. 46.
    Polkowski, L., Skowron, A. (1996) Adaptive decision-making by systems of cooperative intelligent agents organized on rough mereological principles. Intelligent Automation and Soft Computing, An International Journal 2/2, 121–132Google Scholar
  47. 47.
    Polkowski, L., Skowron, A. (1998) Towards adaptive calculus of granules. In: Proceedings of the FUZZ-IEEE’98 International Conference, Anchorage, Alaska, USA, May 5–9, 111–116Google Scholar
  48. 48.
    Polkowski, L., Skowron, A. (1998) Rough sets: A perspective. In: [49], 31–58MathSciNetGoogle Scholar
  49. 49.
    Polkowski, L., Skowron, A. (Eds.) (1998) Rough Sets in Knowledge Discovery 1: Methodology and Applications. Physica-Verlag, HeidelbergGoogle Scholar
  50. 50.
    Polkowski, L., Skowron, A. (Eds.) (1998) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Physica-Verlag, HeidelbergGoogle Scholar
  51. 51.
    Polkowski, L., Skowron, A. (1998) Rough mereological foundations for design, analysis, synthesis, and control in distributive systems. Information Sciences International Journal 104/1–2 Elsevier Science, 129–156Google Scholar
  52. 52.
    Polkowski, L., Skowron, A. (Eds.) (1998) Proc. First International Conference on Rough Sets and Soft Computing (RSCTC’98). Warszawa, Poland, June 2227, Lecture Notes in Artificial Intelligence 1424 Springer-Verlag, BerlinGoogle Scholar
  53. 53.
    Polkowski, L., Skowron, A. (1999) Towards adaptive calculus of granules. In: [76], 1, 201–227MathSciNetGoogle Scholar
  54. 54.
    Polkowski, L., Skowron, A. (2000) Rough mereology in information systems. A case study: Qualitative spatial reasoning. In: [44] (in print)Google Scholar
  55. 55.
    Quinlan, J.R. (1993) C4. 5. Programs for machine learning. Morgan Kaufmann, San Mateo, CAGoogle Scholar
  56. 56.
    Rissanen, J.J. (1978) Modeling by Shortest Data Description. Automatica 14, 465–471MATHCrossRefGoogle Scholar
  57. 57.
    Roddick J.F., Spiliopoulou, M. (1999) A bibliography of temporal, spatial, and temporal data mining research. Newsletter of the Special Interest Group (SIG) on Knowledge Discovery Sz Data Mining 1/1, 34–38Google Scholar
  58. 58.
    Selman, B., Kautz, H., McAllester, D. (1997) Ten challenges in propositional reasoning and search. Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI’97), Japan.Google Scholar
  59. 59.
    Ras, Z.W. (1996) Cooperative knowledge-based systems. Journal of the Intelligent Automation Soft Computing 2/2 (special issue edited by T.Y. Lin), 193–202Google Scholar
  60. 60.
    Shrager, J., Langley, P. (1990) Computational Approaches to Scientific Discovery. In: Shrager, J., Langley, P. (Eds.), Computational Models of Scientific Discovery and Theory Formation, Morgan Kaufmann, San Mateo, 1–25Google Scholar
  61. 61.
    Skowron, A. (1995) Synthesis of adaptive decision systems from experimental data. In: A. Aamodt, J. Komorowski (eds), Proc. of the Fifth Scandinavian Conference on Artificial Intelligence (SCAI’95), May 1995, Trondheim, Norway, IOS Press, Amsterdam, 220–238.Google Scholar
  62. 62.
    Skowron, A., Nguyen, H.S. (1999) Boolean reasoning scheme with some applications in data mining. Proceedings of the 3-rd European Conference on Principles and Practice of Knowledge Discovery in Databases, September 1999, Prague Czech Republic, Lecture Notes in Computer Science 1704, 107–115Google Scholar
  63. 63.
    Skowron, A., Rauszer, C. (1992) The Discernibility matrices and functions in information systems. In: Slowinski [68], 331–362Google Scholar
  64. 64.
    Skowron, A., Stepaniuk, J. (1996) Tolerance Approximation Spaces. Funda-menta Informaticae 27, 245–253MathSciNetMATHGoogle Scholar
  65. 65.
    Skowron, A., Stepaniuk, J., Tsumoto, S. (1999) Information Granules for Spatial Reasoning. Bulletin of the International Rough Set Society 3/4, 147–154Google Scholar
  66. 66.
    Stepaniuk, J. (1998) Approximation spaces, reducts and representatives. In: [50] 109–126MathSciNetGoogle Scholar
  67. 67.
    Sl§zak, D. (1998) Approximate reducts in decision tables. In: Proceedings of the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’96) 3, July 1–5, Granada, Spain, 1159–1164Google Scholar
  68. 68.
    Slowinski, R. (Ed.) (1992) Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht.MATHGoogle Scholar
  69. 69.
    Slowiriski, R., Vanderpooten, D. (1997) Similarity relation as a basis for rough approximations. In: R Wang (Ed.): Advances in Machine Intelligence & Soft Computing, Bookwrights, Raleigh NC, 17–33.Google Scholar
  70. 70.
    Slowinski, R., Vanderpooten, D. (1999) A generalized definition of rough approximations based on similarity. IEEE Trans, on Data and Knowledge Engineering (to appear)Google Scholar
  71. 71.
    Szczuka, M. (2000) Symbolic and neural network methods for classifiers construction. Ph.D. Dissertation, Warsaw UniversityGoogle Scholar
  72. 72.
    Tsumoto, S. (1998) Modelling diagnostic rules based on rough sets. In: Polkowski and Skowron [52], 475–482Google Scholar
  73. 73.
    Valdz-Prez, R.E. (1999) Discovery tools for science apps. Comm ACM 42/11, 37–41Google Scholar
  74. 74.
    Zadeh, L.A. (1996) Fuzzy logic computing with words. IEEE Trans, on Fuzzy Systems 4, 103–111CrossRefGoogle Scholar
  75. 75.
    Zadeh, L.A. (1997) Toward a theory of fuzzy information granulation and its certainty in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Zadeh, L.A., Kacprzyk, J. (Eds.) (1999) Computing with Words in Information/Intelligent Systems 1–2. Physica-Verlag, HeidelbergGoogle Scholar
  77. 77.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W. (1997) New parallel algorithms for fast discovery of association rules. Data Mining and Knowledge Discovery: An International Journal, special issue on Scalable High-Performance Computing for KDD 1/4, 343–373Google Scholar
  78. 78.
    Zhong, N., Skowron, A., Ohsuga, S. (Eds.) (1999) Proceedings of the 7-th International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’99). Yamaguchi, November 9–11, 1999, Lecture Notes in Artificial Intelligence 1711, Springer-Verlag, BerlinGoogle Scholar
  79. 79.
    Ziarko, Z. (1993) Variable Precision Rough Set Model. J. of Computer and System Sciences 46, 39–59MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Ziarko, W. (ed.) (1994) Rough Sets, Fuzzy Sets and Knowledge Discovery (RSKD’93). Workshops in Computing, Springer-Verlag Sz British Computer Society, London, BerlinGoogle Scholar
  81. 81.
    Ziarko, W. (1998) Rough sets as a methodology for data mining. In: L. Polkowski A, Skowron (Eds.), Rough Sets in Knowledge Discovery 1: Methods Applications, Physica-Verlag, Heidelberg, 554–576.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andrzej Skowron
    • 1
  1. 1.Institute of MathematicsWarsaw UniversityWarsawPoland

Personalised recommendations