Advertisement

Soft Computing at a Flotation Plant

  • Heikki Hyötyniemi
  • Raimo Ylinen
  • Jorma Miettunen
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 71)

Abstract

Flotation is used in mineral processing industries for separation of grains of valuable minerals from those of side minerals (Laskowski and Woodburn 1998). In the continuous flow flotation cell (Fig. 1), air is pumped into a suspension of ore and water. The desired mineral tends to adhere to air bubbles and rises to the froth layer where the concentrate floats over the edge of the cell; the main part of other minerals remains in the slurry. The separation of minerals requires that the desired mineral is water-repellent: in zinc flotation, this can be reached by conditioning chemicals as copper sulphate CuSO4; xanthate is needed to reach lower surface tension, etc.

Keywords

Partial Little Square Copper Sulphate Bubble Size Pulp Density Froth Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basilevsky, A. (1994): Statistical factor analysis and related methods. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  2. Beucher, S. and Meyer, F. (1993): The morphological approach to segmentation: The watershed transformation. In: Dougherty, E.R. (ed.): Mathematical Morphology and Image Processing. Marcel Dekker, New York, pp. 433–481Google Scholar
  3. Cipriano, A., Guarini, M., Vidal, R., Soto, A., Sepúldeva, C., Mery, D., Briseno, H. (1998): A real time visual sensor for supervision of flotation cells. Mineral Engineering 11 (6), 489–499CrossRefGoogle Scholar
  4. Hyötyniemi, H., Ylinen, R. (1998): Modeling of visual froth data. In: Heidepriem, J. (ed.): Preprints of the IFAC Symposium on Automation in Mining, Mineral and Metal Processing. Elsevier Science, New York, pp. 309–314.Google Scholar
  5. Hyötyniemi, H., Hasu, V. (2000): Independent components of expertise. In: Hyötyniemi, H. (ed.): Proceedings of the Finnish Artificial Intelligence Conference (SteP 2000). Finnish Artificial Intelligence Society, Helsinki, vol. 3, pp. 37–44Google Scholar
  6. Hätönen, J. (1999): Image analysis in mineral flotation. M.Sc. Thesis, Helsinki University of Technology, Control Engineering Laboratory, Report 116Google Scholar
  7. Hätönen, J., Hyötyniemi, H., Bonifaci, G., Volpe, F., Serranti, S., Carlsson, L.-E. (1999): Using PCA in controller strategy design for a flotation process. In: Chen, H.F., Cheng, D.Z., Zhang, J.F. (ed.): Preprints the 14th IFAC World Congress. Elsevier Science, Oxford New York Tokyo, pp. 385–390Google Scholar
  8. Hätönen, J., Hyötyniemi, H., Miettunen, J., Carlsson, L.-E. (1999): Using image information and PLS for predicting mineral concentrations in the flotation froth. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials (IPMM’99), Hawaii, USAGoogle Scholar
  9. Laskowski, J. S., Woodburn, E. T. (eds.) (1998): Frothing in flotation II. Gordon and Breach Science PublishersGoogle Scholar
  10. Moolman, D. W., Aldrich, C., van Deventer, J. S. J., Bradshaw, D. B. (1996): The interpretation of flotation froth surfaces by using digital image analysis and neural networks. Chem. Eng. Sci. 50 (22), 3501–3513Google Scholar
  11. Moolman, D. W., Aldrich, C., van Deventer, J. S. J., Stange, W. W. (1995): The classification of froth structures in copper flotation by means of a neural net. Int. J. Mineral Processing 43 (3–4), 193–208CrossRefGoogle Scholar
  12. Niemi, A., Ylinen, R., Hyötyniemi, H. (1997): On the characterization of pulp and froth in cells of flotation plant. Int. J. Mineral Processing 45(3), 51, 51–66CrossRefGoogle Scholar
  13. Ylinen, R., Hasu, V., Hyötyniemi, H., Sipari P. (1999): control of flotation by machine vision. In; Proceedings of the Automation Days 1999. Finnish Society of Automation, Helsinki, pp. 459–464Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Heikki Hyötyniemi
    • 1
  • Raimo Ylinen
    • 2
  • Jorma Miettunen
    • 3
  1. 1.Control Engineering LaboratoryHelsinki University of Technology, TKKFinland
  2. 2.Systems Engineering LaboratoryUniversity of Oulu, Oulun yliopistoOuluFinland
  3. 3.Outokumpu Mining OyPyhäsalmi MinePyhäsalmiFinland

Personalised recommendations