Advertisement

Soft Computing Applications in Mineral and Metal Industries

  • Kauko Leiviskä
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 71)

Abstract

Soft Computing has many industrial application areas, also in mineral and metal processing. Intelligent methods are used in Software Sensors to make the existing measurements more efficient or to replace the non-existing measurements with software systems that form the measurement signals e.g. from other, existing measurements. Both fuzzy logic and neural networks have been used. Another area is the monitoring of the measurement systems and assuring the good condition of the system.

Keywords

Neural Network Fuzzy Logic Expert System Blast Furnace Fuzzy Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaraasakka, M., Leiviskä, K., Seppänen, M. (1998): Neural network based classification of blast furnace gas distribution. In: Proceedings TOOLMET ‘88 Symposium — Tool environments and development methods for intelligent systems. Control Engineering Laboratory, University of Oulu, Oulu, pp. 40–44Google Scholar
  2. Aldrich, C., van Deventer, J.S.C. (1994): The use of connectionist systems to reconcile inconsistent process data. The Chemical Engineering Journal 54, 125–135Google Scholar
  3. Aldrich, C., yen Deventer, J.S.C. (1995): Comparison of different artificial neural nets for detection and location of gross errors in process. Ind. Eng. Chem. Res. 34, 216–224Google Scholar
  4. Angstenberger, J. (1996): Blast furnace analysis with neural networks. In: Bulsari, A.B. (ed.): International Conference on Engineering Applications of Neural Networks Proceedings (EANN ‘86), London, UK, 37–40Google Scholar
  5. Bartolacci, G., Bouajila, A. (2000): Application of multivariable tools to mineral processing data analysis and modelling: Flotation case. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 188–193Google Scholar
  6. Benford, P., Meech, J.A. (1992): Advising flotation operators using a real-time expert system. Minerals Engineering 5 (10–12), 1325–1331CrossRefGoogle Scholar
  7. Bergh, L.G., Achurra, G.H., Chacana, B. (2000): Coal rate injection control in a slag cleaning furnace. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 183–187Google Scholar
  8. Bergh, L.G., Yinatos, J.B., Leiva, C.A. (1998): Fuzzy supervisory control of flotation columns. Minerals Engineering 11 (8), 739–748CrossRefGoogle Scholar
  9. Bogdanoff, A., Yliniemi, L., Leiviskä, K. (1998): Prototype fuzzy logic controller for electric arc furnace. In: Proceedings of TOOLMET ‘88 Symposium — Tool environments and development methods for intelligent systems. Control Engineering Laboratory, University of Oulu, Oulu, pp. 49–53Google Scholar
  10. Bourassa, M., Lanthier, R. (1995): Grinding circuit optimization at Mine Doyon. In: 27th Annual Meeting of the Canadian Mineral Processors. CIM Publications, Montreal, Canada, pp. 294–310Google Scholar
  11. Carvalho, M.T., Durao, F. (1999): Performance of a flotation column fuzzy controller. In: Mastorakis, N. (ed.): Computers and Computational Engineering in Control. World Scientific and Engineering Society Press, Athens, Greece, pp. 220–225Google Scholar
  12. Carvalho, M.T., Durao, F. (2000): Supervisor fuzzy controller of a flotation column. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 200–205Google Scholar
  13. Chojcan, J., Czogala, E., Tyma, G. (1995): On fuzzy control of the ventilation process in the Longwalls with methane emissions in coal mines. In: EUFIT’95 — Third European Congress on Intelligent Techniques and Soft Computing Proceedings. Verlag Mainz, Aachen, Germany, pp. 1036–1040Google Scholar
  14. Cipriano A., Guarini, M., Soto, A., Briceno, H., Mery, D. (1997): Expert supervision of flotation cells using digital image processing. In: Hoberg, H., von Blottnitz, H. (eds.): Proceedings of the 20th International Mineral Processing Conference. GDMB Publications, Aachen, Germany, pp. 281–292Google Scholar
  15. Cipriano, A., Medina, A., Martinez, C., Gonzalez, G. (1991): Supervisor and control strategy for a flotation plant. In: Proceedings IFAC Workshop on Expert Systems in Mining and Metals Processing. Finnish Society of Automation, Helsinki, Finland, pp. 281–285Google Scholar
  16. Cortez, L., Durao, F. (1995): An expert neural network to control a mineral flotation process. In: 25th International Symposium on the Application of Computers and Operations Research in the Mineral Industry (APCOM) Proceedings. AusIMM Publications, Carlton, Victoria, pp. 431–436Google Scholar
  17. Denby, B., Schofield, D. (1994): Open-Pit Design and Scheduling by Use of Genetic Algorithms. Trans (Section A: Mining Industry), IMM 103, A21 - A26.Google Scholar
  18. Denby, B., Schofield, D. (1995): The Use of Genetic Algorithms in Underground Mine Scheduling. In: 25th APCOM Proceedings. AusIMM Publications, Carlton, Victoria, pp 389–394Google Scholar
  19. Van Deventer, J.S.J., Bezuidenhout, M., Moolman, D.W. (1997): On-line visualisation of flotation performance using neural computer vision of the froth texture. In: Hoberg, H., von Blottnitz, H. (eds.): 20th International Mineral Processing Congress. GDMB Publications, Aachen, Germany, pp. 315–326Google Scholar
  20. Dominigues, S., Campoy, P., Aracil, R. (1994): A neural network based quality control system for steel strip manufacturing. In: Artificial Intelligence in Real Time Control, Proceedings, Valencia, Spain, pp. 185–190Google Scholar
  21. Du, Y.G., del Villar, R., Thibault J. (1997): Neural net-based softsensor for dynamic particle size estimation in grinding circuits. International Journal of Mineral Processing 52 (2–3), 121–135CrossRefGoogle Scholar
  22. Dupond, F., Odet, C., Carton, M., Alexandre, P. (1993): Automatic recognition and analysis of surface defects on pickled steel. In: SPIE 1993 Proceedings, Orlando, FL, USA, pp. 78–89Google Scholar
  23. Durao, F., Cortez, L.A. (1995): Neural network controller of a flotation process. In: 19th International Mineral Processing Conference (IMPC) Proceedings. SME Publications, Littleton, Co., pp. 245–250Google Scholar
  24. Ebner, J., Gould, L., Raml, H., Stiasny, H., Wasner, N., Fuerschuss H. (1997): Fuzzy logic control improves sinter plant performance at VA Stahl Linz. Steel Times International, January 1997, pp. 35–38Google Scholar
  25. Edwards, R., Mular, A.L. (1992): An Expert System Supervisor of a Flotation Circuit. CIM Bulletin 84 (959), 69–76Google Scholar
  26. Eggert, J., Folinsbee, J., Benford, P. (1994). SAG Mill Control at Dome Mines Using an Expert System, In: 26th Canadian Mineral Processors Proceedings. CIM Publications, Montreal, Canada, pp. 16–22Google Scholar
  27. Flament, F., Thibault, J., Hodouin, D. (1993): Neural network based control of mineral plants. Minerals Engineering 6 (3), 235–249CrossRefGoogle Scholar
  28. Frank, P.M. (1997): Implementation of a fuzzy logic based level control concept for continuous casting at Hüttenwerke Krupp Mannesmann. In: ERUDIT TC A Workshop: “Applications in Steel Industry”’, Aachen, Germany, 14 pGoogle Scholar
  29. Funabashi, M., Maenda, A. (1995): A hybrid and neural hybrid expert systems: synergetic AI. IEEE Expert, August 1995, 32–40Google Scholar
  30. Furukawa, K., Amo, K., Watanabe, S., Itahishi, M., Kosakai, I. (1992): Development of CC mould level control system by neural network. In: Current advances in Materials and Processes, Japan.Google Scholar
  31. Hatanaka, K., Tanaka, T., Kominami, H. (1993): Breakout forecasting system based on multiple neural networks for continuous casting in steel production. Fujitsu Scientific and Technical Journal, 29, 265–270Google Scholar
  32. Lida, O., Ushijima, Y., Sawada, T. (1995): Application of AI techniques to blast furnace operations. Iron and Steel Engineering 72 (10), 24–28Google Scholar
  33. ISIS. 1997. http://www.ento.vt.edu/Facilities/ OnCampus/ISISInfo.htmlGoogle Scholar
  34. Jämsä-Jounela, S.-L., Vapaavuori, E., Salmi, T., Gränbärj, M., Vermasvuori, M. (2000): Fault diagnosis system for the Outokumpu flash smelting process. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 441 118Google Scholar
  35. Karr, C.L. (1996): Strategy for adaptive process control for a column flotation unit. In: Ramani, R.V. (ed.): 26th International Symposium on the Application of Computers and Operations Research in the Mineral Industry (APCOM) Proceedings. SME Publications, Littleton, Co., pp. 303–307Google Scholar
  36. Koskinen, J., Yliniemi, L. (1996): Fuzzy control of a rotary dryer, In: Proceedings of TOOLMET’96 Symposium - Tool environments and development methods for intelligent systems. Control Engineering Laboratory, University of Oulu, Oulu, pp. 205217Google Scholar
  37. Koskinen, J., Yliniemi, L., Leiviskä, K. (1998): Fuzzy modelling of a pilot plant rotary dryer. In: International Conference on Control ‘88 Proceedings. University of Wales, Swansea, UK, 515–518Google Scholar
  38. Kumar, S., Meech, J.A., Samarasekera, I.V., Brimacombe, J.K. (1993): An expert system to trouble-shoot quality problems in the continuous casting of steel billets. Iron & Steelmaker 20 (9), 29–36.Google Scholar
  39. Kämäräinen, J.K., Kälviäinen H., Terho, K., Saarelainen E. (2000): Visual quality control of the vacuum tank degassing. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 379–384Google Scholar
  40. Lacouture, B, Russell, C., Griffin, P., Leung, K. (1991): Copper Flotation Expert System at Mount Isa Mines Limited. In: Dobby, G.S., Argyropoulos S.A., Rao, S.R. (eds.) Proceedings Copper 91, pp. 429–437Google Scholar
  41. Laine, S., Lappainen, H. Jämsä-Jounela, S.-L. (1995): On-line determination of ore type using cluster analysis and neural networks. Minerals Engineering 8 (6), 637–648Google Scholar
  42. Lassus, L., Saxén, H. (1998): System for pattern recognition of blast furnace wall temperatures. In: Proceedings of TOOLMET ‘88 Symposium–Tool environments and development methods for intelligent systems. Control Engineering Laboratory„ University of Oulu, Oulu, pp. 45–48Google Scholar
  43. Lee, D., Lee, Y. (2000): Application of neural network for improving accuracy of roll force model in hot-rolling mill. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 240–244Google Scholar
  44. Leiviskä, K. (1992): Application Viewpoints of Expert Systems in Mineral and Metal Processing. In: Proceedings of the IFAC Workshop Expert Systems in Mineral and Metal Processing. Pergamon Press, Oxford, pp. 191–195Google Scholar
  45. Leiviskä, K. (1996): Applications of intelligent methods in the Control Engineering Laboratory, University of Oulu. In: Proceedings of TOOLMET ‘86 Symposium–Tool environments and development methods for intelligent systems. Control Engineering Laboratory, University of Oulu, Oulu, pp. 28–34Google Scholar
  46. Leven, J., Jonsson, N.G., Wiklund, O. (1995): An artificial neural network for rolling applications. Steel Times 223 (4), 137–138Google Scholar
  47. Lu, C. (1998): Application of ANN in a combination with mathematical model in prediction of rolling load of the finishing stands in HSM. In: 7th International Conference on Steel Rolling Proceedings, Chiba, Japan, pp. 87–92Google Scholar
  48. Maki, Y., Takashima, N., Obata, H., Iida, O., Nakahima, K., Sawada, T. (1991): Application of fuzzy theory to ironmaking process control. Kawasaki Steel Technical Report, No. 24, pp. 8–10Google Scholar
  49. McDermott K., Clyle P., Hall, M., Harris, C.A. (1992): An Expert System for Control of No.4 Autogenous Mill Circuit at Wabush Mines. In: Canadian Mineral Processors Proceedings. CIM Publications, Montreal, Canada, Paper 24, pp. 20–24Google Scholar
  50. Meech J.A. (1995): AI Applications in the Mining Industry into the 21st Century. In: 25th International Symposium on the Application of Computers and Operations Research in the Mineral Industry (APCOM) Proceedings. AusIMM Publications, Carlton, Victoria. Also in: (http://www.mining.ubc. ca /faculty/meech/apcom.htm)Google Scholar
  51. Meech J.A. and Harris, C.A. (1992): Expert Systems for Gold Processing Plants. In: Randol Gold Forum, Vancouver, B.C., pp. 45–61Google Scholar
  52. Osorio, P., Perez-Correa, J.R., Cipriano, A. (1999): Assessment of expert fuzzy controllers for conventional flotation plants. Minerals Engineering 12 (11), 1327–1338CrossRefGoogle Scholar
  53. Otsuka, Y., Matsuda, K., Hanaoka, K. (1992): Application of neural network systems to pattern recognition of blast furnace operation data. Kobleco Technology Review, No. 15, 12–16Google Scholar
  54. Paris, A., Cipriano, A. (1991): Supervisor Expert Control of a semi autogenous grinding circuit. In: IFAC Workshop on Expert Systems in Mineral and Metals Processing. Finnish Society of Automation, Helsinki, pp. 211–216Google Scholar
  55. Palmu, P. (1998): Experience of fuzzy logic control system at Rautaruukki Raahe Steel. In: Proceedings of TOOLMET ‘88 Symposium — Tool environments and development methods for intelligent systems. Control Engineering Laboratory, University of Oulu, Oulu, pp. 32–39Google Scholar
  56. Perry, R., Hall, M. (1994): Les Mines Selbaie semi-autogenous grinding circuit expert system. In: 26th Annual Meeting of the Canadian Mineral Processors Proceedings. CIM Publications, Montreal, Canada, pp. 294–310Google Scholar
  57. Poirier, P., Raabe, H., Meech, J.A. (1993): Using froth identification in an advisory expert system for copper flotation operations. In: 23th Canadian Mineral Processors Conference Proceedings. CIM Publications, Montreal, Canada, pp. 14–19Google Scholar
  58. Poirier, P.J., Meech, J.A. (1993): Using fuzzy logic for on-line trend analysis. In: 2nd IEEE Conf. on Control Applications Proceedings, Vancouver, B.C., pp. 83–86Google Scholar
  59. Poppe, T., Schlang, M., Obradovic, D. (1995): Neural network: reducing energy and material requirements. Siemens Review 4, 24–27Google Scholar
  60. Portmann, N.F., Lindhoff, G., Sörgel, G., Gramckow, O. (1995): Application of neural networks in rolling mill automation. Iron and Steel Engineering 72 (2), 33–36Google Scholar
  61. Rakocevic, V.M., Meech, J.A. (1995): An artificial neural network to interpret froth images from a flotation process. CIM Bulletin 88, 16–22Google Scholar
  62. Rantala, A., Virtanen, H., Saloheimo, K., Jämsä-Jounela, S.-L. (2000): Using principal component analysis and self-organising map to estimate the physical quality of cathode copper. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 373–378Google Scholar
  63. Rauma, T., Nyberg, J., Herranen, J. (2000): Fuzzy control of furnace temperature in a zinc roaster. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 161–165Google Scholar
  64. Rausch, H. (1997): Control of blast furnace performance using neural networks. In: ESIT `97 — First European Symposium on Applications of Intelligent Technologies Proceedings. Verlag Mainz, Aachen, Germany, pp. 37–44Google Scholar
  65. Ruokonen, E. (1996): Application of the expert system based on neural network at the Kemi concentrator. In: Proceedings of TOOLMET’96 Symposium — Tool environments and development methods for intelligent systems. Control Engineering Laboratory. University of Oulu, Oulu, pp. 102–110Google Scholar
  66. Rämet, P.; Lehtola, S.; Leiviskä, K.; Mannermaa, J-P. (1996): The fluidized bed granulation process modelling and control using neural networks and fuzzy control. In: Zimmermannn, H.-J. (ed.): EUFIT’96 — Fourth European Congress on Intelligent Techniques and Soft Computing — Proceedings. Verlag Mainz, Aachen, Germany, pp. 1924–1928Google Scholar
  67. Schlang, M., Jansen, M., Lang, B., Poppe, T., Runkler, T., Weinzierl, K. (2000): Current and future developments in neural computation in steel processing. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 27–37Google Scholar
  68. Siemens: Newsletter Metals, Mining and More, Edition 3/97. Available on-line at: http://www.atd.siemens.de/metals_mining_more/index.html. 25.9.1998Google Scholar
  69. Takada, H., Hamada, K., Kaya, K. (1994): A design environment for neural networks and its applications. Control Engineering Practice 2 (2), 123–128CrossRefGoogle Scholar
  70. The intelligent arc furnace controller. Available on-line at http://www.neural.com /IAFController/IAFController.htm. 16.4.1998Google Scholar
  71. Thibault, J., Flament, F., Hoduin, D. (1991): Modelling and control of mineral processing plants using neural networks. In: IFAC Workshop on Expert Systems in Mineral and Metals Processing. Finnish Society of Automation, Helsinki, pp. 281–288Google Scholar
  72. Thomas, G.S. (1996a): Optimisation and scheduling of open pits via genetic algorithms and simulated annealing. In: Proceedings of the 1st International Symposium on Mine Simulation via the Internet in December 1996Google Scholar
  73. Thomas, G.S. (1996b): Pit optimisation and mine production scheduling — The way ahead. In: Ramani, R.V. (ed.): 26th International Symposium on the Application of Computers and Operations Research in the Mineral Industry (APCOM) Proceedings. SME Publications, Littleton, Co., pp 221–228Google Scholar
  74. Thomson, S.J., Peart, R.M. (1986): An expert system for soil moisture-based scheduling of center pivot irrigation. ASAE. Paper # 86, 4518Google Scholar
  75. Tolwinski B., Underwood R. (1992): An algorithm to estimate the optimal evolution of an open pit mine, In: The 23rd International Symposium on the Application of Computers and Operations Research in the Mineral Industry (APCOM) Proceedings. SME Publications, Littleton, Co., pp 399–409Google Scholar
  76. Vermeulen, W., Bodin, A., Zwaag, S. (1997): Prediction of measured temperature after the last finishing stands using artificial neural networks. Steel Research 68 (1), 20–26Google Scholar
  77. Wu, M., She, J.H., Nakano, M., Gui, W. (2000): Expert control and fault diagnosis of the leaching process in zinc hydrometallurgy plant. In: Jämsä-Jounela, S.-L., Vapaavuori, E. (eds.): Future Trends in Automation in Mineral and Metal Processing, IFAC Workshop Preprints. Finnish Society of Automation, Helsinki, pp. 351–356Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Kauko Leiviskä
    • 1
  1. 1.Control Engineering LaboratoryUniversity of Oulu, Oulun yliopistoOuluFinland

Personalised recommendations