Advertisement

Intelligent Modelling of Continuous Pulp Cooking

  • Kauko Leiviskä
  • Esko Juuso
  • Ari Isokangas
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 71)

Abstract

Cooking is the major process in the pulp mill and its proper control is very important to the pulp production. The cooking should be done to the best quality at the minimum cost. Usually, the best quality means the minimisation of variation in the quality variables. Quality variations must simultaneously compensate for the effects of several types of disturbances. The main objective is to guarantee the similar cooking history for all chip particles as they pass through the digester. This leads to decreased variation in pulp quality compared with the conventional control.

Keywords

Membership Function Fuzzy Model Kappa Number Cooking Process Trapezoidal Membership Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haataja, K., Leiviskä, K. and Sutinen, R. (1997): Kappa-number estimation with neural networks. In: Proceedings of IMEKO World Congress, Finnish Society of Automation, Tampere, Finland, Volume XA, pp. 1–5Google Scholar
  2. Juuso, E. K., Leiviskä K. (1995): A Development Environment for Industrial Applications of Fuzzy Control. In: Zimmermann, H.-J. (ed.): Proceedings of the Third European Congress on Intelligent Techniques and Soft Computing —EUFIT’95. Verlag Mainz, Aachen, Volume 2, pp. 796–803Google Scholar
  3. Juuso, E. K. (1996): Linguistic Equations in System Development for Computational Intelligence. In: Zimmermann, H.-J. (ed.): Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing —EUFIT96. Verkag Mainz, Aachen, Volume 2, pp. 1127–1131Google Scholar
  4. Leiviskä, K. (1999): Process Control in Fiber Line. In Leiviskä, K. (ed.): Process Control. Papermaking Science and Technology, Book 14, Fapet Oy, Jyväskylä, Finland, pp. 73–99Google Scholar
  5. Lemmetti, A., Leiviskä, K. and Sutinen R. (1998): Kappa-number Prediction Based on Cooking Liquor Measurement. Report A No 5, May 1998. Control Engineering Laboratory, University of Oulu, Oulu, Finland, 31 pGoogle Scholar
  6. Murtovaara, S., Juuso, E. K., Sutinen, R., Leiviskä, K. (1998a): Modelling of Pulp Cooking Characteristics by Using Fuzzy Logic and Linguistic Equation Models. In: Proceedings of TOOLMET’98 — Tool Environments and Development Methods for Intelligent Systems. University of Oulu, Oulu, Finland, pp. 90–96Google Scholar
  7. Murtovaara, S., Juuso, E. K., Sutinen, R., Leiviskä, K. (1998b): Neural Networks Modelling of Pulp Digester. In: Dourado, A. (ed.): Proceedings of CONTROLO’98, 3`d Portuguese Conference on Automatic Control. APCA, Portugal, pp. 627–630Google Scholar
  8. Murtovaara, S., Leiviskä, K., Juuso, E., Sutinen, R. (1999): Modelling of Pulp Characteristics in Kraft Cooking. Report A No 9, Control Engineering Laboratory. University of Oulu, Oulu, Finland, 20 pGoogle Scholar
  9. Sutinen, R., Furst, P., Joensuu, I. Leiviskä, K. (1990): Advanced Kamyr Digester Control. In: Proceedings of 24th EUCEPA Conference. SPCI, Stockholm, Sweden, pp. 253–264Google Scholar
  10. Sutinen, R. (1996): Prediction of cooking results using neural networks. Automaatioväylä 5, pp. 19–22 (In Finnish)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Kauko Leiviskä
    • 1
  • Esko Juuso
    • 1
  • Ari Isokangas
    • 1
  1. 1.Control Engineering LaboratoryUniversity of Oulu, Oulun yliopistoOuluFinland

Personalised recommendations