Basics of Soft Computing Methods

  • Kauko Leiviskä
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 71)


Zadeh (1994) introduced the term “Soft Computing” for the first time. He used the term to mean systems that “exploit the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, robustness, low solution cost, and better rapport with reliability”. It includes fuzzy logic, neural computing, evolutionary computing and probabilistic computing as main methodologies. Like any other concept, also Soft Computing has many definitions.


Genetic Algorithm Membership Function Hide Layer Fuzzy Logic Rule Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babuska, R., Verbruggen, H.B. (1995): A new identification method for linguistic fuzzy models. In: Proceedings FUZZ-IEEE/IFES’95, Yokohama, Japan, pp. 905–912Google Scholar
  2. Valente deOliveira, J. (1993): Neuron inspired rules for fuzzy relational structures. Fuzzy Sets and Systems 57 (1), 41–55CrossRefGoogle Scholar
  3. Driankov D., Hellendoom H., and Reinfrank M. (1993): An introduction to fuzzy control. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  4. Dubois, D., Prade, H. (1993): Fuzzy sets: A survey of engineering applications. Computers Chemical Engineering 17, pp. S373–380Google Scholar
  5. Final Report (2000): Adaptive and intelligent systems applications. Technology Program Report 18/2000. Tekes, Helsinki, Finland.Google Scholar
  6. Glorennec, P. Y. (1994): Learning algorithms for neuro-fuzzy networks. In: Fuzzy Control Systems. CRC Press, Boca-Raton, Fl., pp. 3–18Google Scholar
  7. Goldberg, D.E. (1989): Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing, ReadingGoogle Scholar
  8. Ishigami, H.; Fukuda, T.; Shibata, T.; Arai, F. (1995): Structure optimization of fuzzy neural network by genetic algorithm. Fuzzy Sets and Systems 71, 257–264CrossRefGoogle Scholar
  9. Huang, S.H., Zhang, H.-C. (1995): Neural-expert hybrid approach for intelligent manufacturing: A survey. Computers in Industry 26, 107–126Google Scholar
  10. Jang, J.-S. R. (1992): Self-learning fuzzy controller based on temporal back-propagation. IEEE Transactions on Neural Networks 3 (5), 714–723CrossRefGoogle Scholar
  11. Jang, J.-S.R. (1993): ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics 23 (3), 665–685CrossRefGoogle Scholar
  12. Juuso, E.K. (1996): Computational intelligence in distributed interactive synthetic environments. In: Bruzzone, A.G., Kerchoffs, E.J.H. (eds.): Simulation in process industry. 8th European Simulation Symposium. SCS, Ghent, Belgium, pp. 157–162Google Scholar
  13. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J. (1992): Neural networks for control systems — A survey. Automatica 28 (6), 1083–1112CrossRefGoogle Scholar
  14. Kohonen, T. (1997): Self-organizing maps. 2nd Edition. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  15. Lacher, R.C., Hruska, S.I., Kuncicky, D.C. (1992): Backpropagation learning in expert networks. IEEE Trans. Neural Networks 3 (1), 62–72CrossRefGoogle Scholar
  16. Linkens, D.A.; Nyongesa, H.O. (1995): Genetic algorithms for fuzzy control, Part 1 offline system development and application. IEE Proc.-Control Theory Appl. 142 (3), 161–176CrossRefGoogle Scholar
  17. Linkens, D.A.; Nyongesa, H.O. (1995): Genetic algorithms for fuzzy control, Part 2 Online system development and application. IEE Proc.-Control Theory Appl. 142 (3), 177–176CrossRefGoogle Scholar
  18. Mamdani, E.H. (1974): Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEE 121 (12), 1585–1588Google Scholar
  19. Michalewicz, Z. (1996): Genetic algorithms + data structures = evolution programs. 3rd Edition. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  20. Ross, T. J. (1995): Fuzzy logic with engineering applications. McGraw-Hill, New YorkGoogle Scholar
  21. Rummelhart, D.E., Hinton, G.E., Williams, R.J. (1986): Learning internal representations by error propagation. In: Parallel Data Processing. M.I.T. Press, Cambridge, MA, pp. 318–362Google Scholar
  22. Takagi, T., Sugeno, M. (1985): Fuzzy identification of systems and its application to mod- eling and control. IEEE Transactions on Systems, Man and Cybernetics 15 (1), 116–132CrossRefGoogle Scholar
  23. Verbruggen, H.B., Bruijn, P.M. (1997): Fuzzy control and conventional control: What is (and can be) the real contribution of fuzzy systems. Fuzzy Sets and Systems 90, 151–160Google Scholar
  24. Wang, L-X. (1994): Adaptive fuzzy systems and control, design and stability analysis. Prentice Hall, New JerseyGoogle Scholar
  25. Wells, G. (1995): An introduction to neural networks. In: Boullart, L., Krijgsman, A., Vingerhoeds, R.A. (eds.): Applications of Artificial Intelligence in Process Control. Pergamon Press, New YorkGoogle Scholar
  26. Waterman, D.A. (1986): A guide to expert systems. Addison-Wesley Publishing Company, ReadingGoogle Scholar
  27. Zhou, J., Juuso, E., Leiviskä, K. (1997): Intelligent methods in peat production. In: Zimmermannn, H.-J. (ed.): EUFIT’97 — Fifth European Congress on Intelligent Techniques and Soft Computing Proceedings. Verlag Mainz, Aachen, Volume 3, pp. 2103–2107Google Scholar
  28. Zadeh, L. A. (1965): Fuzzy sets. Information and Control 8 (3), 338–353CrossRefGoogle Scholar
  29. Zadeh, L.A. (1975): The concept of a linguistic variable and its application to approximate reasoning. Part 1. Information Sciences 8, 199–249CrossRefGoogle Scholar
  30. Zadeh, L.A. (1994): Fuzzy logic and Soft Computing: issues, contentions and perspectives. In: Proceedings of IIZUKA ‘84. Third Int. Conf. On Fuzzy Logic, Neural Nets and Soft Computing, pp. 1–2Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Kauko Leiviskä
    • 1
  1. 1.Control Engineering LaboratoryUniversity of Oulu, Oulun yliopistoOuluFinland

Personalised recommendations