Extension Principle and Probabilistic Inferential Process

  • Giangiacomo Gerla
  • Domenico Calabró
  • Luciana Scarpati
Part of the Advances in Soft Computing book series (AINSC, volume 11)


In this work we sketch out a method to design expert systems, probabilistic in nature. The inferential engine we propose is a data-base storing information about a set of “past cases ”.


Boolean Algebra Actual Case Closure Operator Propositional Variable Canonical Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bacchus, Lp, a logic for representing and reasoning with statistical Knowledge, Comput. Intell., 6 (1990) 209–231.CrossRefGoogle Scholar
  2. 2.
    L. Biacino, G. Gerla, An extension principle for closure operators, J. of Math. Anal. Appl., 198 (1996) 1–24.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    G. Gerla, The probability that Tweety is able to fly, International Journal of Intelligent Systems, 9 (1994) 403–409.MATHCrossRefGoogle Scholar
  4. 4.
    G. Gerla, Fuzzy Logic: Mathematical Tools for Approximate Reasoning, Kluwer Academic Publishers (2000) Dordrecht.Google Scholar
  5. 5.
    G. Gerla, L. Scarpati, Extension principles for fuzzy set theory, Journal of Information Sciences, 106 (1998) 49–69.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    J. Y. Halpern, An analysis of first-order logic of probability, Artificial Intelligence, 46 (1990) 331–350.CrossRefGoogle Scholar
  7. 7.
    Z. Pawlak, Rough sets, International Journal of Information and Computer Science, 11 (1982) 344–356.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Giangiacomo Gerla
    • 1
  • Domenico Calabró
    • 1
  • Luciana Scarpati
    • 1
  1. 1.Dip. Matematica e InformaticaUniversitá di SalernoBaronissiItaly

Personalised recommendations