Finiteness and Duality in MV-algebras Theory

  • Antonio Di Nola
  • Revaz Grigolia
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 11)


Some results about finiteness properties of MV-algebras and some dualities between categories of MV-algebras and categories of certain ordered structures are presented. Actually, finite MV-algebras are presented as algebras of words. Moreover, it is presented a duality between the category of MV-algebras which are finitely generated, having finite spectrum, and the category of finite linear dual Heyting algebras.


Prime Ideal Distributive Lattice Heyting Algebra Priestley Space Strong Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Balbes, P. Dwinger, Distributive Lattices, University of Missoure Press, Columbia, (1974).MATHGoogle Scholar
  2. 2.
    L. P. Belluce, Semisimple Algebras of Infinite-Valued Logic and Bold Fuzzy set Theory, Canadian J. Math. 38, (1986), 1356–1379.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    R. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux Rticuls, Springer Lecture Notes in Mathematics, 608, (1977).Google Scholar
  4. 4.
    C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88, (1958), 467–490.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    R. Cignoli, A. Di Nola, A. Lettieri, Priestley Duality and Quotient Lattices of Many-Valued Algebra, Rendiconti del Circolo Matematico di Palermo, Serie II XL, (1991), 371–384.CrossRefGoogle Scholar
  6. 6.
    R. Cignoli, A. Torrens, Ordered Spectra and Boolean Products of MV-algebras, Centre de Recerca Matematica, Institut d’estudis Catalans, No. 172, (1992).Google Scholar
  7. 7.
    B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge Mathematical Textbooks, Cambridge University Press, (1990).MATHGoogle Scholar
  8. 8.
    A. Di Nola, R. Grigolia, MV-algebras in duality with labelled root systems,Discrete Mathematics, to appear.Google Scholar
  9. 9.
    A. Di Nola and A. Lettieri, Perfect MV-algebras are categorically equivalent to abelian t-groups, Studia Logica 53, No. 3 (1994), 417–432.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    S. Eilenberg, Automata, Language and Machines, Academic Press, N.Y.,(1974).Google Scholar
  11. 11.
    S. Eilenberg, M. P. Schützenberger, On Pseudovarieties, Advance in Mathematics, 19, (1976), 413–418.MATHCrossRefGoogle Scholar
  12. 12.
    L. Esakia, On Topological Kripke Models, Dokl, AN SSSR, 214, (1974), 2, 298–301.MathSciNetGoogle Scholar
  13. 13.
    L. Esakia, Heyting Algebras I, Duality Theory, Metsniereba, Tbilisi, (1985), (in Russian)MATHGoogle Scholar
  14. 14.
    L. Esakia, Semantical analysis of bi-modal (temporal) logical systems, Logic, Semantics, Methodology; Tbilisi,“Metsiniereba”, (1978), 87–99.Google Scholar
  15. 15.
    G. Grätzer, General lattice theory, Akademie-Verlag, Berlin, (1978).CrossRefGoogle Scholar
  16. 16.
    G. Grätzer, Lattice Theory, First Concepts and Distributive Lattices, W.H. Freeman and Co., San Francisco, 1972.Google Scholar
  17. 17.
    A. Horn, Logic with Truth Values in a Linearly Ordered Heyting Algebra, J. Symbolic Logic 34, (1969), 395–408.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    D. Mundici, Interpretation of AF C* -Algebras in Lukasiewicz Sentential Calculus, J. Funct. Analysis 65, (1986), 15–63.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    H. A. Priestley, Ordered Sets and Duality for Distributive Lattice, Annales of Discrete Mathematics, 23, (1984), 39–60.MathSciNetGoogle Scholar
  20. 20.
    I. Prodanov, An Abstract Approach to the Algebraic Notion of Spectrum, Proceedings of the Steklov Institute of Mathematics, 4, (1984), 215–223.Google Scholar
  21. 21.
    C. Rauszer, Semi-Boolean algebras and their applications to intuitionistic logic withdual operations, Fund. Math., 83 (1974), 3, 219–249.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Antonio Di Nola
    • 1
  • Revaz Grigolia
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversitá di SalernoBaronissi (SA)Italy
  2. 2.Institute of CyberneticsGeorgian Academy of SciencesTiblisGeorgia

Personalised recommendations