Advertisement

Survey of Theory and Applications of Łukasiewicz-Pavelka Fuzzy Logic

  • Esko Turunen
Part of the Advances in Soft Computing book series (AINSC, volume 11)

Abstract

We demonstrate how approximate reasoning, many classification tasks, case-based reasoning, etc. can be viewed as applications of many valued similarity and, thus Lukasiewicz-Pavelka logic.

Keywords

Fuzzy Logic Fuzzy Rule Anaerobic Threshold Fuzzy Theory Fuzzy Similarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. C. Chang, Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    R. Cignoli, M.L. D’Ottaviano, D. Mundici, Algebraic Foundations of many valued Reasoning. Kluwer Acad. Publ. 1999.Google Scholar
  3. 3.
    R. Cignoli, F. Esteva, 1. Godo, A. Torres, Basic Fuzzy Logic is the logic of continuous t-norms and their residua, submitted.Google Scholar
  4. 4.
    P. Hâjek, Metamathematics of fuzzy logic, Kluwer Acad. Publishers, Dordrecht, 1998.CrossRefGoogle Scholar
  5. 5.
    M. Hempilä, Defining an athlete’s aerobic and anaerobic thresholds with fuzzy total similarity. Diploma Thesis. Lappeenranta University of Technology, 1998.Google Scholar
  6. 6.
    U. Höhle, On the Fundamentals of Fuzzy Set Theory. J. of Math. Anal. and Appl. 201 (1996) 786–826.MATHCrossRefGoogle Scholar
  7. 7.
    I. Kant, Logic, New York: Bobbs-Merrill. 1974.Google Scholar
  8. 8.
    J. Lukasiewicz, Selected works. Cambridge Univ. Press. 1970.Google Scholar
  9. 9.
    I. Niiniluoto, Analogy and Similarity in Scientific Reasoning D. H. Hel-man (ed.) Analogical Reasoning. Kluwer Acad. Publ. 1988. 271–298.Google Scholar
  10. 10.
    J. Pavelka, On fuzzy logic, I,II,III Zeitsch. f. Math. Logik. 25 (1979), 45–52, 119–134, 447–464.Google Scholar
  11. 11.
    E. Turunen, Mathematics behind Fuzzy Logic, Advances in Soft Computing, Physica-Verlag, Heidelberg, 1999.Google Scholar
  12. 12.
    L. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    L. Zadeh, Similarity Relations and Fuzzy Orderings, Information Sciences 3 (1971) 177–200.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Esko Turunen
    • 1
  1. 1.Tampere University of TechnologyTampereFinland

Personalised recommendations