Hardware Implementation of Intelligent Systems

  • Marco Russo
  • Luigi Caponetto
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 74)


Neural computing, fuzzy logic and evolutionary computing are widely used in a broad range of application fields. While many fields take full advantage from conventional von Neumann processors, there are still classes, such as for example intelligent systems in high-energy physics, requiring the speed of fully hardware implementations.


Membership Function Fuzzy Logic Fuzzy System Intelligent System Fuzzy Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    De Gloria, A. Costa and M. Olivieri: Hardware design of asynchronous fuzzy controllers. IEEE Transactions on Fuzzy Systems, 4 (3): 328–338, Aug. 1996.CrossRefGoogle Scholar
  2. [2]
    Y. Leblebici, A. Schmid and D. Mlynek: A mixed analog-digital artificial neural network architecture with on-chip learning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1999.Google Scholar
  3. [3]
    G. Anzellotti, R. Battiti, I. Lazzizzera, G. Soncini, A. Zorat, A. Sartori, G. Tecchioli and P. Lee: A highly parallel chip for triggering applications with inductive learning based on the reactive tabu search. International Journal of Modern Physics C, 6 (4): 555–560, 1995.CrossRefGoogle Scholar
  4. [4]
    G. Ascia, V. Catania, B. Giacalone, M. Russo and L. Vita: Designing for parallel fuzzy computing. IEEE Micro, 15 (6): 62, December 1995.CrossRefGoogle Scholar
  5. [5]
    G. Ascia, V. Catania, M. Russo and L. Vita: Rule-driven VLSI fuzzy processor — implementing a scalable inference processor with analog fuzzy gates. IEEE Micro, 16 (3): 62–74, June 1996.Google Scholar
  6. [6]
    E. Avogadro, S. Commodaro, A. Costa, A. De Gloria, Faraboschi, F. Giudici and A. Pagni: An optimized risc instruction set for fuzzy applications. In Proceedings of FUZZY-IEEE’94, Orlando, Florida, pp. 133–137. IEEE, 1994.Google Scholar
  7. [7]
    T. M. McGinnity, B. Roche and L. McDaid: A novel synapse design for digital VLSI implementation of neural networks. In Irish Digital Signal Processing and Control Conference IDSPCC’96, Trinity College, Dublin, pp. 290, 1996.Google Scholar
  8. [8]
    R. Battiti, P. Lee, A. Sartori and G. Tecchiolli: Special-purpose parallel architectures for high-performance machine learning. In Proc. Int.Conf High-Performance Computing and Networking HPCN’95 Milan Italy. Springer-Verlag, May 1995.Google Scholar
  9. [9]
    J. J. Blake, L. P. Maguire, B. Roche, T. M. McGinnity and L. J. McDaid: The implementation of fuzzy systems, neural networks and fuzzy neural networks using FPGAs. In Neural Networks and Fuzzy Neural Networks using FPGAs, Joint Conference on Information Sciences, Durham, North Carolina, Vol. 1, pp. 231–233, 1997.Google Scholar
  10. [10]
    U. Cilingiroglu, B. Pamir, Z. Gunay and F. Dulger: Sampled-analog implementation of application-specific fuzzy controllers. IEEE Transaction on Fuzzy Systems, 5 (3): 431–442, Aug. 1997.CrossRefGoogle Scholar
  11. [11]
    J. Chen and M. J. Patyra: VHDL modeling of a multivariable fuzzy logic controller hardware system. In Proc. Third IEEE Int. Conf On Fuzzy Systems, FUZZ-IEEE’94, Orlando, Florida, pp. 129–132, 1994.Google Scholar
  12. [12]
    W. D. Dettloff, K. E. Yount and H. Watanabe: A VLSI fuzzy logic controller with reconfigurable, cascadable architecture. IEEE J. Solid-State Circuits, 25 (2): 376–382, April 1990.CrossRefGoogle Scholar
  13. [13]
    E. I. El-Masry, H.-K. Yang and M. A. Yakout: Implementations of artificial neural networks using current-mode pulse width modulation technique. IEEE Transactions on Neural Networks, 8 (3): 532–548, May 1997.CrossRefGoogle Scholar
  14. [14]
    Gabrielli and E. Gandolfi: A fast digital fuzzy processor. IEEE MICRO Chips, Systems, Software and Applications, pp. 68–79, Jan./Feb. 1999.Google Scholar
  15. [15]
    S. Guo and L. Peters: A reconfigurable analog fuzzy logic controller. In The FUZZ-IEEE, Orlando, Florida, pp. 124–128. IEEE, 1994.Google Scholar
  16. [16]
    S. Guo and L. Peters: A high-speed fuzzy co-processor implemented in analog/digital technique. In The 4th Int. Conf. on Soft Computing (IIZUKA’96), pp. 233–237, Sept. 30-Oct. 5, 1996.Google Scholar
  17. [17]
    S. Guo and L. Peters: A new hardware implementation of the center of gravity defuzzification method. Technical report, Gesellschaft fur Methematik and Datenverarbeitung (GMD) and Institut fur Systementwurfstechnik (SET ), 1994.Google Scholar
  18. [18]
    T. Kunemund, H. Eichfeld and M. Menke: A 12b general-purpose fuzzy logic controller chip. IEEE Transactions on Fuzzy Systems, 4 (4): 460–475, Nov. 1996.CrossRefGoogle Scholar
  19. [19]
    T. Hamalainen, J. Saarinen, P. Ojala and K. Kaski: Implementing genetic algorithms in a tree shape computer architecture. In J. T. Alander, (Editor): Proceedings of the First Nordic Workshop on Genetic Algorithms and their Applications (1NWGA) Vaasa (Finland), pp. 159–284, Jan. 1995.Google Scholar
  20. [20]
    P. Hasler, C. Diorio, B. A. Minch, and C. Mead: A single-transistor silicon synapse. IEEE Transactions on Electronic Devices, 43 (11), Nov. 1996.Google Scholar
  21. [21]
    P. Ienne and G. Kuhn: Digital Signal Processing Technology, Vol. CR57 of Critical Reviews Series. Chapter: Digital Systems for Neural Networks, pp. 314–345. Society of Photo-Optical Instrumentation Engineers, 1995.Google Scholar
  22. [22]
    N. Iijima, K. Koizumi, H. Mitsui and M. Sone: Fuzzy control design system based on dsp. In Proceedings of FUZZ-IEEE’94, Orlando, Florida, pp. 1786–1790. IEEE, 1994.Google Scholar
  23. [23]
    R. Jager: Fuzzy Logic Control. Ph. D. thesis, Department of Electrical Engineering, Delft University of Technology, 1995.Google Scholar
  24. [24]
    T. Lehmann: Hardware Learning in Analogue VLSI Neural Networks.PhD thesis, Technical University of Denmark — Lyngby, Sept. 1994.Google Scholar
  25. [25]
    S. Lindsey, T. Lindblad, G. Sekniaidze, M. Minerskjold, G. Szekely and Age Eide: Experience with the IBM ZISC neural network chip. Int. J. of Modern Physics C, 6 (4): 579–584, 1995.CrossRefGoogle Scholar
  26. [26]
    S. Lindsey and T. Lindblad: Survey of neural network hardware, invited paper. In Proc. Of Applications and Science of Artificial Neural Networks Conference, Vol. SPIE VOL. 2492, Part Two, pp. 1194–1205, Apr. 1995.Google Scholar
  27. [27]
    J. L. Grantner, M. J. Patyra and K. Koster: Digital fuzzy logic controller: Design and implementation. IEEE Transactions on Fuzzy Systems, 4 (4): 439–459, Nov. 1996.CrossRefGoogle Scholar
  28. [28]
    M. Marchesi, G. Orlandi, F. Piazza and A. Uncini: Fast neural networks without multipliers. IEEE Trans. on Neural Networks, 4 (1): 53–62, Jan. 1993.CrossRefGoogle Scholar
  29. [29]
    G. M. Megson and I. M. Bland: Synthesis of a systolic array genetic algorithms. In Proceedings of the 12`“ International Parallel Processing Symposium, pp. 316–320, Apr. 1998.Google Scholar
  30. [30]
    F. Piazza, M. L. Marchesi and A. Uncini: Backpropagation without multiplier for multilayer neural networks. IEEE Proceedings Circuits, Devices and Systems, 143 (4): 229–232, Aug. 1996.CrossRefGoogle Scholar
  31. [31]
    M. Masetti, E. Gandolfi, A. Gabrielli, M. Cecchi, M. Russo and I. D’Antone: Design and Realization of a 50 MFIPS Fuzzy Processor in 1.0,u m CMOS VLSI Technology, Vol. III of Advances in Fuzzy Theory and Technology, pp. 327–340. Duke University, Durham, North Carolina, USA, 1995.Google Scholar
  32. [32]
    M. Russo: FuGeNeSys: A Genetic Neural System for Fuzzy Modeling. IEEE Transactions on Fuzzy Systems, 6 (3): 373–388, Aug. 1998.CrossRefGoogle Scholar
  33. [33]
    M. Russo: Fuzzy Hardware Research from a Historical Point of View, pp. 125. In: Abraham Kandel and Gideon Langholz (Editors): Fuzzy Hardware: Architectures and Applications. Kluwer Academic Publishers, Boston, USA, 1998.Google Scholar
  34. [34]
    M. Russo: GEFREX: a Genetic Fuzzy Extractor. Int. J. of Knowledge based Intelligent Engineering Systems, 2 (1): 49–59, Jan.1998.Google Scholar
  35. [35]
    M. Russo and L. C. Jain: Introduction to Evolutionary Computing, CRC Press, USA, 2000.Google Scholar
  36. [36]
    D. Nauck, F. Klawonn and R. Kruse: Fuzzy sets, fuzzy controllers, and neural networks. Wissenschaftliche Zeitschrift der Humboldt-Universitat zu ’ Berlin, R. Medizin, 41 (4): 99–120, 1992.Google Scholar
  37. [37]
    Patki: Fuzzy logic based hardware: Some experiences. In Proc. International Discourse on Fuzzy Logic and Management of Complexity (FLAMOC’96), Sidney, Australia, Jan. 1996.Google Scholar
  38. [38]
    L. Peters and S. Guo: Three Generations of Fuzzy Hardware, pp. 27–43. In “Fuzzy Hardware: Architectures and Applications” Kluwer Academic Pub., Boston, 1998.Google Scholar
  39. [39]
    M. Russo: Fuzzy Hardware Research from a Historical Point of View, pp. 125. In A. Kandel and G. Langholz (Editors): Fuzzy Hardware: Architectures and Applications. Kluwer Academic Publishers, Boston, USA, 1998.Google Scholar
  40. [40]
    L. Peters, S. Guo and H. Surmann: Design and application of an analog fuzzy logic controller. IEEE Transactions on Fuzzy Systems, 4 (4): 429–438, Nov. 1994.Google Scholar
  41. [41]
    J. Schwarz: Motorola microcontroller as the platform for fuzzy applications. In Scientific International Conference on Communications, Signal and Systems CSS’96, Brno, Czech Republic, Sept. 1996. AMSE.Google Scholar
  42. [42]
    S. D. Scott, A. Samal and S. Seth Hga: A hardware-based genetic algorithm. In Proc. Of the 1955 ACM/SIGDA Third Int. Symposium on Field-Programmable Gate Arrays, Monterey, CA, pp. 53–59. ACM, Feb. 1995.Google Scholar
  43. [43]
    S. D. Scott, S. Seth and A. Samal: A hardware engine for genetic algorithms. Technical Report UNL-CSE-97–001, University of Nebraska-Lincoln, Jul. 1997.Google Scholar
  44. [44]
    M. J. S. Smith: Application-Specific Integrated Circuits. Addison Wesley, 1997.Google Scholar
  45. [45]
    H. Surmann, A. Ungering and K. Goser: Optimized fuzzy controller architecture for field programmable gate arrays. In Field-Programmable Gate Arrays: Architectures and Tools for Rapid Prototyping. Second Int. Workshop on Field Programmable Logic and Applications, pp. 124–133, Vienna, Austria, August 1992.Google Scholar
  46. [46]
    H. Surmann and A. P. Ungering: Fuzzy-rule-based systems on general purpose processors. IEEE MICRO, Special issue on fuzzy systems, pp. 4048, August 1995.Google Scholar
  47. [47]
    H. Surmann, A. P. Ungering, T. Kettner and K. Goser: What kind of hardware is necessary for a fuzzy rule based system. In FUZZ-IEEE World Congress on Computional Intelligence, Orlando, pp. 274–278, 26 June-2 July 1994.Google Scholar
  48. [48]
    S. K. Halgamuge, T. Hollstein and M. Glesner: Computer-aided design of fuzzy systems based on generic vhdl specifications. IEEE Transactions on Fuzzy Systems, 4 (4): 403–417, Nov. 1996.CrossRefGoogle Scholar
  49. [49]
    J. Tombs, A. Torralba and L. G. Franquelo: Design of a fuzzy controller mixing analog and digital techniques. In Proceedings of FUZZ-IEEE’94, Orlando, Florida, pp. 1755–1758. IEEE, 1994.Google Scholar
  50. [50]
    M. Tommiska and J. Vuori: Hardware implementation of ga. In Proceedings of the Second Nordic Workshop on Genetic Algorithms and their Applications (2NWGA) Vaasa (Finland), pp. 71–78, Aug. 1996.Google Scholar
  51. [51]
    T. F. Colodro and L. G. Franquelo: A fuzzy-logic controller with on-chip learning, employing stochastic logic. In Proc. FUZZ-IEEE’94, Orlando, Florida, pp. 1759–1764. IEEE, 1994.Google Scholar
  52. [52]
    H. Turton, T. Arslan and D. H. Horrocks: A hardware architecture for a parallel genetic algorithm for image registration. In Proc. IEE Colloquium on Genetic Algorithms in Image Processing and Vision, number 1994/193, pp. 11/1–11/6. IEE, Oct. 1994.Google Scholar
  53. [53]
    T. Yamakawa and T. Miki: The Current Mode Fuzzy Logic Integrated Circuits Fabricated by the Standard CMOS Process. IEEE Transactions on Computers, c-35(2): 161–167, February 1986.Google Scholar
  54. [54]
    P. Ungering, H. Bauer and K. Goser: Architecture of a fuzzy-processor based on an 8-bit microprocessor. In Proc. Third IEEE Int. Conf. On Fuzzy Systems, FUZZ-IEEE’94, Orlando, Florida, pp. 297–301. IEEE, Jun. 1994.Google Scholar
  55. [55]
    H. Watanable: RISC approach to design of fuzzy processor architecture. In IEEE International Conference on Fuzzy Systems, pp. 431–440, Mar. 1992.Google Scholar
  56. [56]
    J. Wawrzynek, K. Asanovic and N. Morgan: The design of a neuro-microprocessor. IEEE Transactions on Neural Networks, 4 (3): 394–399, May 1993.CrossRefGoogle Scholar
  57. [57]
    Zorat, A. Sartori, G. Tecchiolli and L. T. Koczy: A flexible VLSI processor for fast neural network and fuzzy control implementation. In Proc. 4`“ International Conference on Soft Computing (IIZUKA’96), Sep. 1996.Google Scholar
  58. [58]
    Zorat, A. Sartori, G. Tecchiolli, I. Lazzizzera and P. Lee: Advances in the design of the totem neurochip. In Proc. 5th International Workshop on Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics, pp. 134–139. Elsevier North-Holland NIM, Apr. 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Marco Russo
    • 1
    • 2
  • Luigi Caponetto
    • 2
  1. 1.Dept. of Physics, Faculty of EngineeringUniversity of MessinaSant’AgataItaly
  2. 2.INFN Section of CataniaItaly

Personalised recommendations