A Fuzzy Borda Count in Multi-person Decision Making

  • José Luis García-Lapresta
  • Miguel Martínez-Panero
Part of the Advances in Soft Computing book series (AINSC, volume 12)


Inspired by the Borda count, in this paper we introduce a “fuzzy Borda count”. It is obtained by means of score graduation and normalization processes from its original pattern. The advantages of the Borda count hold, and are even improved, and its drawbacks are somehow corrected, providing an appropriate scheme in multi-person decision making. In addition, these Borda counts are related to approval voting, establishing a unified framework from distinct points of view.


Public Choice Preference Relation Social Choice Condorcet Winner Approval Vote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrow, K.J. ( 1951, 2nd ed. 1963): Social Choice and Individual Values. John Wiley and Sons, Inc., New York.Google Scholar
  2. Bezdek, J.C. — Harris, J.D. (1978): “Fuzzy partitions and relations: an axiomatic basis for clustering”. Fuzzy Sets and Systems 2, pp. 5 — 14.Google Scholar
  3. Bezdek, J.C. — Spillman, B. — Spillman, R. (1978): “A fuzzy relation space for group decision theory”. Fuzzy Sets and Systems 1, pp. 255 — 268.Google Scholar
  4. Black, D. (1958): The Theory of Committees and Elections. Cambridge University Press, London.Google Scholar
  5. Black, D. (1976): “Partial justification of the Borda count”. Public Choice 28, pp. 1 — 15.Google Scholar
  6. Brams, S.J. — Fishburn, P.C. (1983): Approval Voting. Birkhäuser, Boston. Candeal, J.C. — Indurâin, E. (1995): “Aggregation of preferences from algebraic models on groups”. Social Choice and Welfare 12, pp. 165 — 173.Google Scholar
  7. Candeal, J.C. — Indurâin, E. — Uriarte, J.R. (1992): “Some issues related to the topological aggregation of preferences”. Social Choice and Welfare 9, pp. 213 —227.Google Scholar
  8. Chichilnisky, G. — Heal, G. (1983): “Necessary and sufficient conditions for a resolution of the social choice paradox”. Journal of Economic Theory 31, pp. 68 —87.Google Scholar
  9. Copeland, A.H. (1951): “A `reasonable’ social welfare function”. Notes from a seminar on applications of mathematics to the social sciences (mimeo), University of Michigan.Google Scholar
  10. Dasgupta, M. — Deb, R. (1996): “Transitivity and fuzzy preferences”. Social Choice and Welfare 13, pp. 305 — 318.Google Scholar
  11. Debord, B. (1992): “An axiomatic characterization of Borda’s k-choice function”. Social Choice and Welfare 9, pp. 337 — 343.Google Scholar
  12. Dummett, M. (1998): “The Borda count and agenda manipulation”. Social Choice and Welfare 15, pp. 289 — 296.Google Scholar
  13. Fishburn, P.C. (1990): “Multiperson decision making: a selective review’, in Kacprzyk, J. — Fedrizzi, M. (eds.): Multiperson Decision Making Using Fuzzy Sets and Possibility Theory, pp. 3 — 27. Kluwer Academic Publishers, Dordrecht.Google Scholar
  14. Garcia-Lapresta, J.L. — Llamazares, B. (2000): “Aggregation of fuzzy preferences: some rules of the mean”. Social Choice and Welfare 17, pp. 673 —690.Google Scholar
  15. Kemeny, J. (1959): “Mathematics without numbers”. Daedalus 88, pp. 571 —591.Google Scholar
  16. Le Breton, M. — Uriarte, J.R. (1990): “On the robustness of the impossibility result in the topological approach to Social Choice”. Social Choice and Welfare 7, pp. 131— 140.Google Scholar
  17. Marchant, T (1996): Agrégation de relations valuées par la méthode de Borda en vue d’un rangement. Considérations axiomatiques. Ph. D. Thesis, Université Libre de Bruxelles.Google Scholar
  18. Marchant, T. (2000): “Does the Borda Rule provide more than a ranking?”. Social Choice and Welfare, forthcoming.Google Scholar
  19. McLean, I. — Urken, A.B. (eds.) (1995 a): Classics of Social Choice. Ann Arbor — The University of Michigan Press.Google Scholar
  20. McLean, I. — Urken, A.B. (1995 b): “Independence of irrelevant alternatives before Arrow”. Mathematical Social Sciences 30, pp. 107–126.Google Scholar
  21. Morales, J.I. (1797): Memoria Matematica sobre el Calculo de la Opinion en las Elecciones Imprenta Real. Madrid. English version in McLean — Urken (1995 a, pp. 197 — 235).Google Scholar
  22. Morales, J.I. (1805): Apéndice a la Memoria Matematica sobre el Calculo de la Opinion en las Elecciones. Imprenta de Sancha. Madrid.Google Scholar
  23. Mueller, D.C. (1979): Public Choice. Cambridge University Press, London.Google Scholar
  24. Münnich, A. — Maksa, G. — Mokken, R.J. (1999): “Collective judgement: combining individual value judgements”. Mathematical Social Sciences 37, pp. 211 — 233.Google Scholar
  25. Nitzan, S. — Rubinstein, A. (1981): “A further characterization of Borda ranking method”. Public Choice 36, pp. 153 — 158.Google Scholar
  26. Nurmi, H. (1981): “Approaches to collective decision making with fuzzy preference relations”. Fuzzy Sets and Systems 6, pp. 249 — 259.Google Scholar
  27. Parker, J.R. (1995): “Voting Methods for Multiple Autonomous Agents”. ANZIIS `95, Perth, Australia. Nov. 27, 1995.Google Scholar
  28. Saari, D.G. (1995): Basic Geometry of Voting. Springer — Verlag. Berlin.CrossRefGoogle Scholar
  29. Saari, D.G. — Merlin, V.R. (1996): “The Copeland method I: relationships and the dictionary. Economic Theory 8, pp. 51— 76.Google Scholar
  30. Saari, D.G. — Merlin, V.R. (1997): “A geometric examination of Kemeny’s rule”. Northwestern University, preprint.Google Scholar
  31. Sen, A. (1977): “Social Choice Theory: a re-examination”. Econometrica 45, pp. 53 — 89.Google Scholar
  32. Straffin Jr., P.D. (1980): Topics in the Theory of Voting. Birkhäuser, Boston. Sugden, R. (1981): The Political Economy of Public Choice: An Introduction to Welfare Economics. Oxford: Mart in Robertson.Google Scholar
  33. Tangian, A.S. (2000): “Unlikelihood of Condorcet’s paradox in a large society”. Social Choice and Welfare 17, pp. 337 — 365.Google Scholar
  34. Tanguiane, A.S. (1991): Aggregation and Representation of Preferences. Introduction to Mathematical Theory of Democracy. Springer — Verlag, Berlin.CrossRefGoogle Scholar
  35. Tanino, T. (1984): “Fuzzy preference orderings in group decision making”. Fuzzy sets and Systems 12, pp. 117–131.CrossRefGoogle Scholar
  36. Young, H.P. (1974): “An axiomatization of Borda’s rule”. Journal of Economic Theory 9, pp. 43 — 52.Google Scholar
  37. Young, P. (1995): “Optimal voting rules”. Journal of Economic Perspectives 9, pp. 51— 64.Google Scholar
  38. Zadeh, L.A. (1971): “Similarity relations and fuzzy orderings”, Information Sciences 22, pp. 203 — 213.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • José Luis García-Lapresta
    • 1
  • Miguel Martínez-Panero
    • 1
  1. 1.Departamento de Economía Aplicada (Matemáticas)Facultad de Ciencias Económicas y Empresariales Universidad de ValladolidValladolidSpain

Personalised recommendations