Multicriteria Analysis Based On Stochastic and Probabilistic Dominance in Measuring Quality of Life

  • Michał Zawisza
  • Grażyna Trzpiot
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 12)


In terminology introduced by Vansnik [10], the multicriteria formulation of decision situation can be defined as a model of three components: the set of attributes, the set of alternatives and the set of evaluations. Each pair (attribute, alternatives) is described by vector of evaluation, which may be of different nature. In multicriteria analysis with uncertainty we apply MCAP procedures by Zaras and Martel [13] based on stochastic and probabilistic dominances for welfare in the decision making process.


Social Welfare Weak Preference Multicriteria Analysis Winter Quarter Outrank Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bawa V.S., Lindberg E.B., Rafsky L.C. „An Efficient Algoritm To Determinate Stochastic Dominance Admissible Sets“, Managment Science, Vol 25, No 7, July 1979, (609–622)Google Scholar
  2. [2]
    Burr R., Porter Portfolio Applications: Empirical Studies; - Stochastic Dominnce An Approach to Decision-Making Under Risk, Lexington Books, D.C. Heath and Company, Lexington, Massachusetts, Toronto, 1978.Google Scholar
  3. [3]
    Hadar J., Russel W. R. „Rules of Ordering Uncertaine Prospects”, American Economic Review, Vol. 59, 1969. (25–34)Google Scholar
  4. [4]
    Lee Y. R., Stam A. and Yu P.L. (1984). Dominance Concepts in Random Outcomes. Proceedings of International Seminar on the Mathemathics of Multi-Objective Optimization, CISM, Udine, Italy.Google Scholar
  5. [5]
    Martel J.M., Zaras K. (1994). Multiattribute analysis based on stochastic dominance, in Models and Experiments in Risk and Rationality. Kluwer Academic Publishers,, (225–248)Google Scholar
  6. [6]
    Quirk P., Saposnik R. Admissibility and Measurable Utility Functions. Review of Economic Study, Vol. 29, 1962, (142–146)Google Scholar
  7. [7]
    Roy B. and Bouyssou D. (1993). Aide multicritere a la decision: Methodes et cas, Economica, Paris.Google Scholar
  8. [8]
    Whitemore A. (1970). Third Degree Stochastic Dominance American Economic Review, Vol. 60,, (457–459)Google Scholar
  9. [9]
    Trzaskalik T.,Zaras K., Trzpiot G. (1996). Modelowanie preferencji z wykorzystaniem dominacji stochastycznych. Akademia Ekonomiczna w Katowicach, KatowiceGoogle Scholar
  10. [10]
    Trzaskalik T.,Zaras K., Trzpiot G. (1997). Modelowanie preferencji z wykorzystaniem dominacji stochastycznych - etap I I. Akademia Ekonomiczna w Katowicach, KatowiceGoogle Scholar
  11. [11]
    Vansnik, J.C. (1990) “Measurment theory and decision aid”, Readings in Multiple criteria decision aid, Springer Verlag, Berlin 81–100CrossRefGoogle Scholar
  12. [12]
    Wrather, c. and Yu, P.L. 1982 „Probability Dominance in Random Outcomes“. Journal of Optimization Theory and Appliccation, 36, 3, 315–334.Google Scholar
  13. [13]
    Zaras K. (1989). Dominances stochastiques pour deux classes de fonctions d’utilite: concaves et convexes. RAIRO: Recherche Operationnelle. Vol 23, 1, (57–65)Google Scholar
  14. [14]
    Zaras K. and Martel J. M. (1997). Modeling Preferences Using Stochastic and Probabilistic Dominances. International Conference on Methods and Applications of Multicriteria Decision Making, Mons, Belgium.Google Scholar
  15. [15]
    Zawisza M. (1997). Dominacje stochastyczne i ich implementacja komputerowa. Praca magisterska pod kierunkiem naukowym T. Trzaskalika i G. Trzpiot, Akademia Ekonomiczna w Katowicach, Katowice.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michał Zawisza
    • 1
  • Grażyna Trzpiot
    • 2
  1. 1.Department of Operation ResearchUniversity of EconomicsKatowicePoland
  2. 2.Department of StatisticsUniversity of EconomicsKatowicePoland

Personalised recommendations