Extensions and Modifications of the Kohonen-SOM and Applications in Remote Sensing Image Analysis

  • Thomas Villmann
  • Erzsébet Merényi
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 78)


Utilization of remote sensing multi- and hyperspectral imagery has shown a rapid increase in many areas of economic and scientific significance over the past ten years. Hyperspectral sensors, in particular, are capable of capturing the detailed spectral signatures that uniquely characterize a great number of diverse surface materials. Interpretation of these very high-dimensional signatures, however, has proved an insurmountable challenge for many traditional classification, clustering and visualization methods. This chapter presents spectral image analyses with Self-Organizing Maps (SOMs). Several recent extensions to the original Kohonen SOM are discussed, emphasizing the necessity of faithful topological mapping for correct interpretation. The effectiveness of the presented approaches is demonstrated through case studies on real-life multi- and hyperspectral images.


Receptive Field Hyperspectral Image Output Space Cinder Cone Hyperspectral Imagery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography on Chapter 6

  1. 1.
    J. B. Adams, M. O. Smith, and A. R. Gillespie. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In C. Peters and P. Englert, editors, Remote Geo-chemical Analysis: Elemental and Mineralogical Composition, pages 145–166. Cambridge University Press, New York, 1993.Google Scholar
  2. 2.
    R. E. Arvidson and M. D.-B. and. et al. Archiving and distribution of geologic remote sensing field experiment data EOS, Transactions of the American Geophysical Union, 72 (17): 176, 1991.Google Scholar
  3. 3.
    H.-U. Bauer, R. Der, and M. Herrmann. Controlling the magnification factor of self-organizing feature maps. Neural Computation, 8 (4): 757–771, 1996.CrossRefGoogle Scholar
  4. 4.
    H.-U. Bauer and K. R. Pawelzik. Quantifying the neighborhood preservation of Self-Organizing Feature Maps. IEEE Trans. on Neural Networks, 3 (4): 570–579, 1992.CrossRefGoogle Scholar
  5. 5.
    U. Bauer and T. Villmann. Growing a Hypercubical Output Space in a Self-Organizing Feature Map. IEEE Transactions on Neural Networks, 8 (2): 218–226, 1997.CrossRefGoogle Scholar
  6. 6.
    J. A. Benediktsson, J. R. Sveinsson, and et al. Classification of very-high-dimensional data with geological applications. In Proc. MAC Europe 91, pages 13–18, Lenggries, Germany, 1994.Google Scholar
  7. 7.
    J. A. Benediktsson, P. H. Swain, and et al. Classification of very high dimensional data using neural networks. In IGARSS’90 10th Annual International Geoscience and Remote Sensing Symp., volume 2, page 1269, 1990.Google Scholar
  8. 8.
    J. Bruske and E. Merényi. Estimating the intrinsic dimensionality of hyperspectral images. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’99),pages 105–110, Brussels, Belgium, 1999. D facto publications.Google Scholar
  9. 9.
    J. Campbell. Introduction to Remote Sensing. The Guilford Press, U.S.A., 1996.Google Scholar
  10. 10.
    R. N. Clark. Spectroscopy of rocks and minerals, and principles of spectroscopy. In A. Rencz, editor, Manual of Remote Sensing. John Wiley and Sons, Inc, New York, 1999.Google Scholar
  11. 11.
    R. Der, G. Balzuweit, and M. Herrmann. Constructing principal manifolds in sparse data sets by self-organizing maps with self-regulating neighborhood width. In ICNN 96. The 1996 IEEE International Conference on Neural Networks (Cat. No. 96CH35907), volume 1, pages 480–483. IEEE, New York, NY, USA, 1996.Google Scholar
  12. 12.
    D. DeSieno. Adding a conscience to competitive learning. In Proc. ICNN’88, Int. Conf. on Neural Networks,pages 117–124, Piscataway, NJ, 1988. IEEE Service Center.Google Scholar
  13. 13.
    W. H. Farrand. VIS/NIR Reflectance Spectroscopy of Tuff Rings and Tuff Cones. PhD thesis, University of Arizona, 1991.Google Scholar
  14. 14.
    J. Goppert and W. Rosenstiel. The continuous interpolating self-organizing map. Neural Processing Letters, 5 (3): 185–92, 1997.CrossRefGoogle Scholar
  15. 15.
    P. Grassberger and I. Procaccia. Maesuring the strangeness of strange attractors. Physica, 9D: 189–208, 1983.MathSciNetMATHGoogle Scholar
  16. 16.
    R. O. Green. Summaries of the 6th Annual JPL Airborne Geoscience Workshop. 1. AVIRIS Workshop, Pasadena, CA, March 4–6 1996.Google Scholar
  17. 17.
    R. O. Green and J. Boardman. Exploration of the relationship between information content and signal-to-noise ratio and spatial resolution. In Proc. 9th AVIRIS Earth Science and Applications Workshop, Pasadena, CA, February, 23–25 2000.Google Scholar
  18. 18.
    M. H. Gross and F. Seibert. Visualization of multidimensional image data sets using a neural network. Visual Computer, 10:145–159, 1993.Google Scholar
  19. 19.
    J. A. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation, volume 1 of Santa Fe Institute Studies in the Sciences of Complexity: Lecture Notes. Addison-Wesley, Redwood City, CA, 1991.Google Scholar
  20. 20.
    E. S. Howell, E. Merényi, and L. A. Lebofsky. Classification of asteroid spectra using a neural network. Jour. Geophys. Res., 99 (10): 847–865, 1994.Google Scholar
  21. 21.
    M. M. V. Hulle. Faithful Representations and Topographic Maps. Wiley Series and Adaptive Learning Systems for Signal Processing, Communications, and Control. Wiley Sons, New York, 2000.Google Scholar
  22. 22.
    R. S. Inc. ENVI v.3 User’s Guide, 1997.Google Scholar
  23. 23.
    S. Kaski, J. Nikkilä, and T. Kohonen. Methods for interpreting a self-organized map in data analysis. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’98),pages 185–190, Brussels, Belgium, 1998. D facto publications.Google Scholar
  24. 24.
    T. Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, 1995. (Second Extended Edition 1997 ).Google Scholar
  25. 25.
    T. Kohonen. Comparison of SOM point densities based on different criteria. Neural Computation, 11 (8): 212–234, 1999.CrossRefGoogle Scholar
  26. 26.
    R. Linsker. How to generate maps by maximizing the mutual information between input and output signals. Neural Computation, 1: 402–411, 1989.CrossRefGoogle Scholar
  27. 27.
    T. Martinetz and K. Schulten. Topology representing networks. Neural Networks, 7 (3): 507–522, 1994.CrossRefGoogle Scholar
  28. 28.
    E. Merényi. “Precision mining” of high-dimensional patterns with self-organizing maps: Interpretation of hyperspectral images. In P. Sincak and J. Vascak, editors, Quo Vadis Computational Intelligence? New Trends and Approaches in Computational Intelligence (Studies in Fuzziness and Soft Computing, Vol. 54. Physica-Verlag, 2000.Google Scholar
  29. 29.
    E. Merényi. Self-organizing ANNs for planetary surface composition research. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’98),pages 197–202, Brussels, Belgium, 1998. D facto publications.Google Scholar
  30. 30.
    E. Merényi. The challenges in spectral image analysis: An introduction and review of ANN approaches. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’99),pages 93–98, Brussels, Belgium, 1999. D facto publications.Google Scholar
  31. 31.
    E. Merényi, W. H. Farrand, and et al. Efficient geologic mapping from hyperspectral images with artificial neural networks classification: a comparison to conventional tools. IEEE TGARS, in preparation, 2001.Google Scholar
  32. 32.
    E. Merényi, E. S. Howell, and et al. Prediction of water in asteroids from spectral data shortward of 3 microns. ICARUS, 129 (10): 421–439, 1997.CrossRefGoogle Scholar
  33. 33.
    E. Merényi, R. B. Singer, and J. S. Miller. Mapping of spectral variations on the surface of mars from high spectral resolution telescopic images. ICARUS, 124 (10): 280–295, 1996.CrossRefGoogle Scholar
  34. 34.
    T. Moon and E. Merényi. Classification of hyperspectral images using wavelet transforms and neural networks. In Proc. of the Annual SPIE Conference, page 2569, San diego, CA, 1995.Google Scholar
  35. 35.
    N. Pendock. A simple associative neural network for producing spatially homogeneous spectral abundance interpretations of hyperspectral imagery. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’99),pages 99–104, Brussels, Belgium, 1999. D facto publications.Google Scholar
  36. 36.
    H. Ritter. Parametrized self-organizing maps. In S. Gielen and B. Kappen, editors, Proc. ICANN’93 Int. Conf. on Artificial Neural Networks, pages 568–575, London, UK, 1993. Springer.Google Scholar
  37. 37.
    H. Ritter and K. Schulten. On the stationary state of Kohonen’s self-organizing sensory mapping. Biol. Cyb., 54: 99–106, 1986.CrossRefMATHGoogle Scholar
  38. 38.
    A. Ultsch. Self organized feature maps for monitoring and knowledge aquisition of a chemical process. In S. Gielen and B. Kappen, editors, Proc. ICANN’93, Int. Conf. on Artificial Neural Networks, pages 864–867, London, UK, 1993. Springer.Google Scholar
  39. 39.
    J. Vesanto. SOM-based data visualization methods. Intelligent Data Analysis,3(7):123456, 1999.Google Scholar
  40. 40.
    T. Villmann. Benefits and limits of the self-organizing map and its variants in the area of satellite remote sensoring processing. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’99),pages 111–116, Brussels, Belgium, 1999. D facto publications.Google Scholar
  41. 41.
    T. Villmann. Topology preservation in self–organizing maps. In E. Oja and S. Kaski, editors, Kohonen Maps, number ISBN 951–22–3589–7, pages 279 – 292, Amsterdam (Holland), June 1999. Helsinki, Elsevier.Google Scholar
  42. 42.
    T. Villmann. Neural networks approaches in medicine — a review of actual developments. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’2000),pages 165–176, Brussels, Belgium, 2000. D facto publications.Google Scholar
  43. 43.
    T. Villmann, R. Der, M. Herrmann, and T. Martinetz. Topology Preservation in Self—Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks, 8 (2): 256–266, 1997.CrossRefGoogle Scholar
  44. 44.
    T. Villmann, W. Hermann, and M. Geyer. Data mining and knowledge discovery in medical applications using self-organizing maps. In R. Brause and E. Hanisch, editors, Medical Data Analysis, pages 138–151, Berlin, New York, Heidelberg, 2000. Lecture Notes in Computer Science 1933, Springer—Verlag.Google Scholar
  45. 45.
    T. Villmann and M. Herrmann. Magnification control in neural maps. In Proc. Of European Symposium on Artificial Neural Networks (ESANN’98),pages 191–196, Brussels, Belgium, 1998. D facto publications.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Thomas Villmann
  • Erzsébet Merényi

There are no affiliations available

Personalised recommendations