Advertisement

Overture

  • Teuvo Kohonen
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 78)

Abstract

An introduction to and overview of the Self-Organizing Map (SOM) methods is presented in this chapter.

Keywords

Component Plane Neighboring Model Input Item Topology Preservation Finnish Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography on Chapter 1

  1. 1.
    Kohonen, T. (1982) Self-organizing formation of topologically correct feature maps. Biol. Cybern. 43, 59–69MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Kohonen, T. (1982) Clustering, taxonomy, and topological maps of patterns. Proc. 6th Int. Conf. Pattern Recognition, Munich, Germany, 114–128Google Scholar
  3. 3.
    Kohonen, T. (2001) Self-Organizing Maps, 3rd ed. Springer, LondonCrossRefMATHGoogle Scholar
  4. 4.
    Young, G., Householder, A. S. (1938) Discussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22CrossRefMATHGoogle Scholar
  5. 5.
    Kruskal, J. B., Wish, M. (1978) Multidimensional Scaling. Sage University Paper Series on Quantitative Applications in the Social Sciences No. 07–011. Sage Publications, Newbury ParkGoogle Scholar
  6. 6.
    Ultsch, A., Siemon, H. (1989) Exploratory Data Analysis: Using Kohonen’s Topology Preserving Maps. Technical Report 329. Univ. of Dortmund, Dortmund, GermanyGoogle Scholar
  7. 7.
    Kraaijveld, M. A., Mao, J., Jain, A. K. (1992) A non-linear projection method based on Kohonen’s topology preserving maps. Proc. 11ICPR, Int. Conf. on Pattern Recognition. IEEE Comput. Soc. Press, Los Alamitos, CA, 41–45. Also IEEE Trans. on Neural Networks 6, 548–559 (1995)Google Scholar
  8. 8.
    Cottrell, M., Fort, J. C., Pagés, G. (1997) Theoretical aspects of the SOM algorithm. Proc. WSOM’97, Workshop on Self-Organizing Maps. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland, 246–267Google Scholar
  9. 9.
    Cheng, Y. (1997) Convergence and ordering of Kohonen’s batch map. Neural Computation 9, 1667–1676CrossRefGoogle Scholar
  10. 10.
    Cottrell, M., Fort, J.-C. (1987) Étude d’un processus d’auto-organisation. Annales de l’Institut Henri Poincaré 23, 1–20MathSciNetMATHGoogle Scholar
  11. 11.
    Flanagan, J. A. (1994) Self-Organizing Neural Networks. Ph.D. Thesis, Swiss Federal Inst. of Tech. Lausanne (EPFL )Google Scholar
  12. 12.
    Ritter, H., Martinetz, T., Schulten, K. (1992) Neural Computation and Self-Organizing Maps: An Introduction. Addison-Wesley, Reading, MAMATHGoogle Scholar
  13. 13.
    Heskes, T. (1993) Guaranteed convergence of learning rules. Proc. Int. Conf. on Artificial Neural Networks (ICANN’93), Amsterdam, The Netherlands, 533–536Google Scholar
  14. 14.
    Heskes, T. and Kappen, B. (1993) Error potential for self-organization. Proc. Int. Conf. Neural Networks (ICNN’93), vol. III, 1219–1223CrossRefGoogle Scholar
  15. 15.
    Luttrell, S. R. (1992) Code Vector Density in Topographic Mappings. Memorandum 4669. Defense Research Agency, Malvern, UKGoogle Scholar
  16. 16.
    Zrehen, S. (1993) Analyzing Kohonen maps with geometry. Proc. Int. Conf. on Artificial Neural Networks (ICANN’93), Amsterdam, The Netherlands, 609–612Google Scholar
  17. 17.
    Villmann, T., Der, R., Martinetz, T. (1994) A new quantitative measure of topology preservation in Kohonen’s feature maps. Proc. IEEE Int. Conf. on Neural Networks (ICNN’94), 645–648Google Scholar
  18. 18.
    Kiviluoto, K. (1996) Topology preservation in self-organizing maps. Proc. IEEE Int. Conf. on Neural Networks (ICNN’96), 294–299Google Scholar
  19. 19.
    Kaski, S., Lagus, K. (1996) Comparing self-organizing maps. Proc. Int. Conf. on Artificial Neural Networks (ICANN’96), 809–814Google Scholar
  20. 20.
    Ritter, H. (1991) Asymptotic level density for a class of vector quantization processes. IEEE Trans. Neural Networks 2, 173–175MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kohonen, T. (1999) Comparison of SOM point densities based on different criteria. Neural Computation 11, 2081–2095CrossRefGoogle Scholar
  22. 22.
    Gersho, A. (1979) Asymptotically optimal block quantization. IEEE Trans. Inform. Theory IT-25, 373–380Google Scholar
  23. 23.
    Zador, P. (1982) Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Trans. Inform. Theory IT-28, 139–149Google Scholar
  24. 24.
    Kohonen, T. (1998) Computation of VQ and SOM Point Densities Using the Calculus of Variations. Report A52, Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland.Google Scholar
  25. 25.
    Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela., J., Paatero, V., Saarela, A. (2000) Self-organization of a massive document collection. IEEE Trans. Neural Networks 11, 574–585CrossRefGoogle Scholar
  26. 26.
    Kohonen, T. (1993) Physiological interpretation of the self-organizing map algorithm. Neural Networks 6, 895–905Google Scholar
  27. 27.
    Kaski, S., Kangas, J., Kohonen, T. (1998) Bibliography of self-organizing map (SOM) papers: 1981–1997. Neural Computing Surveys 1, 1–176 (http://www.icsi.berkeley.edurjagota/NCS/)
  28. 28.
    Alhoniemi, E., Hollmén, J., Simula, O., Vesanto, J. (1999) Process monitoring and modeling using the self-organizing map. Integrated Computer-Aided Engineering 6, 3–14Google Scholar
  29. 29.
    Deboeck, G., Kohonen T. (Eds.) (1998) Visual Exploration in Finance with Self-Organizing Maps. Springer, London (Japanese translation: Springer, Tokyo, 1999 )Google Scholar
  30. 30.
    Naim, A., Ratnatunga, K. U., Griffiths, R. E. (1997) Galaxy morphology without classification: self-organizing maps. Astrophys. J. Suppl. Series 111, 357–367CrossRefGoogle Scholar
  31. 31.
    Miikkulainen, R. (1993) Subsymbolic Natural Language Processing: An Integrated Model of Scripts, Lexicon, and Memory. MIT Press, CambridgeGoogle Scholar
  32. 32.
    Tokutaka, H., Kishida, S., Fujimura, K. (1999) Applications of Self-Organizing Maps. Kaibundo, Tokyo, Japan (in Japanese)Google Scholar
  33. 33.
    van Hulle, M. M. (2000) Faithful Representations and Topographic Maps — From Distortion-to Information-Based Self-Organization. John Wiley, New YorkGoogle Scholar
  34. 34.
    Oja, E., Kaski, S. (Eds.) (1999) Kohonen Maps. Elsevier, AmsterdamMATHGoogle Scholar
  35. 35.
    Neurocomputing 21, Special issue on self-organizing maps, Nos. 1–3, October 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Teuvo Kohonen

There are no affiliations available

Personalised recommendations