Advertisement

Fuzzy Geometry

  • John N. Mordeson
  • Premchand S. Nair
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 20)

Abstract

In this chapter, we concentrate on fuzzy geometry. Fuzzy geometry has been studied from different perspectives. The theory presented in this chapter is applicable to pattern recognition, computer graphics and image processing and follows closely the theory as developed by Rosenfeld, [37,47–51]. Buckley and Eslami, [7,8], are developing a fuzzy plane geometry which is quite different, but has the potential for applications in various fields of computer science.

Keywords

Fuzzy Number Hausdorff Distance Triangular Fuzzy Number Fuzzy Subset Border Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, N., Davis, L.S., Milgram, D.L., and Rosenfeld, A., Piece-wise approximation of pictures using maximal neighborhoods, IEEE Trans. Comput. 27: 375–379, 1978.CrossRefGoogle Scholar
  2. 2.
    Ahuja, N. and Hoff, W., Augmented medial axis transformation, Proc. 7th Intl. Conf. on Pattern Recognition, 336–338, 1984.Google Scholar
  3. 3.
    Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, 1981.MATHCrossRefGoogle Scholar
  4. 4.
    Bogomolny, A., On the perimeter and area of fuzzy sets, Fuzzy Sets and Systems 23: 241–246, 1987.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boxer, L., On Hausdorff-like metrics for fuzzy sets, Pattern Recognition Letters 18: 15–118, 1997.Google Scholar
  6. 6.
    Buckley, J.J., Solving fuzzy equations, Fuzzy Sets and Systems 50: 114, 1992.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Buckley, J.J. and Eslami, E., Fuzzy plane geometry I: Points and lines, Fuzzy Sets and Systems 86: 179–187, 1997.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Buckley, J.J. and Eslami, E., Fuzzy plane geometry II: Circles and polygons, Fuzzy Sets and Systems 87: 79–85, 1997.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Buckley, J. J. and Qu, Y., Solving linear and quadratic fuzzy equations, Fuzzy Sets and Systems 38: 43–59, 1990.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Buckley, J.J. and Qu, Y., Solving fuzzy equations, a new solution concept, Fuzzy Sets and Systems 39: 291–301, 1991.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Buckley, J.J. and Qu, Y., Solving systems of fuzzy linear equations, Fuzzy Sets and Systems 43: 33–43, 1991.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chaudhuri, B.B. and Rosenfeld, A., On a metric distance between fuzzy sets, Pattern Recognition Letters 17: 1157–1160, 1996.CrossRefGoogle Scholar
  13. 13.
    Chaudhuri, B.B. and Rosenfeld, A., A modified Hausdorff distance between fuzzy sets, Information Sciences 118: 159–171, 1999.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    De Luca, A. and Terminiu, S., A definition of non-probabilistic entropy in the setting of fuzzy set theory, Inform. and Control 20: 301–312, 1972.MATHCrossRefGoogle Scholar
  15. 15.
    Dubois, D. and Prade, H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 38–40, 1980.Google Scholar
  16. 16.
    Dubois, D. and Prade, H., On distances between fuzzy points and their use for plausible reasoning, Proc. Internat. Conf. Systems Man Cybernet., 300–303, 1983.Google Scholar
  17. 17.
    Dubuisson, M. P. and Jain, A. K., A modified Hausdorff’ distance for object matching, in: Proc. 12th Int. Conf. on Pattern Recognition, 1: 566–568, 1994.Google Scholar
  18. 18.
    Dyer, C.R. and Rosenfeld, A., Thinning algorithms for gray-scale pictures, IEEE Trans. PAMI, 1: 88–89, 1979.CrossRefGoogle Scholar
  19. 19.
    Fan, J., Note on Hausdorff’ like metrics for fuzzy sets, Pattern Recognition Letters 19: 793–796, 1998.CrossRefGoogle Scholar
  20. 20.
    Gelfand, I.M. and Shilov, G.E., Generalized Functions, Academic Press, New York ( 1964, Vol. 1; 1968, Vol. 2 ).Google Scholar
  21. 21.
    Goetschel, R. and Voxman, W., Topological properties of fuzzy numbers, Fuzzy Sets and Systems 10: 87–99, 1983.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Goetschel, R. and Voxman, W., Elementary fuzzy calculus, Fuzzy Sets and Systems 18: 31–43, 1986.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Gupta, K.C. and Ray, S., Fuzzy plane projective geometry, Fuzzy Sets and Systems 54: 191–206, 1993.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Heyting, A., Axiomatic Projective Geometry, North Holland, Amsterdam 1963.Google Scholar
  25. 25.
    Huttenlocher, D. P., Klanderman, G. A., and William, J. R., Comparing images using Hausdorff distances, IEEE Trans. PAMI, 15: 850863, 1993.Google Scholar
  26. 26.
    Kaufmann, A., Introduction to the Theory of Fuzzy Subsets - Fundamental Elements, vol. 1 Academic Press, New York, 1975.Google Scholar
  27. 27.
    Levi, G. and Montanari, U., A gray-weighted skeleton, Information and Control 17: 62–91, 1970.MATHCrossRefGoogle Scholar
  28. 28.
    Nakagawa, Y. and Rosenfeld, A., A note on the use of local min and max operations on digital picture processing, IEEE Trans. Systems Man Cybernet. 8: 632–635, 1978.MATHCrossRefGoogle Scholar
  29. 29.
    Pal, S.K., Fuzzy skeletonization of an image, Pattern Recognition Letters 10: 17–23, 1989.MATHCrossRefGoogle Scholar
  30. 30.
    Pal, S. K., A note on the quantitative measure of image enhancement through fuzziness, IEEE Trans. PAMI 4: 204–208, 1982.MATHCrossRefGoogle Scholar
  31. 31.
    Pal, S. K., A measure of edge ambiguity using fuzzy sets, Pattern Recognition Letters 4: 51–56, 1986.CrossRefGoogle Scholar
  32. 32.
    Pal, S. K. and Chakraborty, B., Fuzzy set theoretic measure for automatic evaluation, IEEE Trans. SMC 16: 754–760, 1986.Google Scholar
  33. 33.
    Pal, S. K., King, R. A., and Hashim, A. A., Automatic grey level thresholding through index of fuzziness and entropy, Pattern Recognition Letters 1: 141–146, 1983.CrossRefGoogle Scholar
  34. 34.
    Pal, S. K. and Majumder, D.D., Fuzzy Mathematical Approach to Pattern Recognition, Wiley ( Halsted Press ), New York, 1986.Google Scholar
  35. 35.
    Pal, S. K. and Pramanik, P. K., Fuzzy measures in determining seed points in clustering, Pattern Recognition Letters, 4: 159–164, 1986.CrossRefGoogle Scholar
  36. 36.
    Pal, S.K. and Rosenfeld, A., Image enhancement and thresholding by optimization of fuzzy compactness, Pattern Recognition Letters 7: 77–86, 1988.MATHCrossRefGoogle Scholar
  37. 37.
    Pal, S.K. and Rosenfeld, A., A fuzzy medial axis transformation based on fuzzy disks, Pattern Recognition Letters 12: 585–590, 1991.CrossRefGoogle Scholar
  38. 38.
    Paumard, J., Robust comparison of binary images, Pattern Recognition Letters 18: 1057–1063, 1997.CrossRefGoogle Scholar
  39. 39.
    Peleg, S. and Rosenfeld, A., A min-max medial axis transformation, IEEE Trans. PAMI 3: 208–210, 1981.CrossRefGoogle Scholar
  40. 40.
    Pickert, G., Projective Ebenen, Springer-Verlag, Berlin-GottingenHeidelberg, 1955.Google Scholar
  41. 41.
    Prewitt, J.M.S., Object enhancement and extraction. In: B. S. Lipkin and A. Rosenfeld, Eds., Picture Processing and Psychopictorics, Academic Press, New York, p. 121, 1970.Google Scholar
  42. 42.
    Puri, M. L. and Ralescu, D. A., Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications, 91: 552–558, 1983.MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Rosenfeld, A., A note on perimeter and diameter in digital pictures, Inform. and Control 24: 384–388, 1974.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Rosenfeld, A., Fuzzy digital topology, Information and Control 40: 7687, 1979.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Rosenfeld, A., On connectivity properties of grayscale pictures, Pattern Recognition 16: 47–50, 1983.CrossRefGoogle Scholar
  46. 46.
    Rosenfeld, A., The fuzzy geometry of image subsets, Pattern Recognition Letters 2: 311–317, 1984.CrossRefGoogle Scholar
  47. 47.
    Rosenfeld, A., The diameter of a fuzzy set, Fuzzy Sets and Systems 13: 241–246, 1984.MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Rosenfeld, A., Distances between fuzzy sets, Pattern Recognition Letters 3: 229–233, 1985.MATHCrossRefGoogle Scholar
  49. 49.
    Rosenfeld, A., Fuzzy rectangles, Pattern Recognition Letters 11: 677679, 1990.Google Scholar
  50. 50.
    Rosenfeld, A., Fuzzy plane geometry: triangles, Pattern Recognition Letters 15: 1261–1264, 1994.CrossRefGoogle Scholar
  51. 51.
    Rosenfeld, A. and Haber, S., The perimeter of a fuzzy set, Pattern Recognition Letters 18: 125–130, 1985.MathSciNetMATHGoogle Scholar
  52. 52.
    Rosenfeld, A. and Kak, A.C., Digital Picture Processing, Academic Press, New York, Vol. 2, 1980.Google Scholar
  53. 53.
    Rosenfeld, A. and Kak, A.C., Digital Picture Processing, Academic Press, New York, Sections 11.1.2, 11.2.1., 1982.Google Scholar
  54. 54.
    Rosenfeld, A. and Klette, R., Degree of adjancency or surroundedness, Pattern Recognition Letters 18: 169–177, 1985.MathSciNetMATHGoogle Scholar
  55. 55.
    Royden, H.L., Real Analysis, Macmillan, New York, 2nd ed., 1968.Google Scholar
  56. 56.
    Serra, J., Image Analysis and Mathematical Morphology, Academic Press, London, 1982, Ch XII.Google Scholar
  57. 57.
    Shilov, G.E., Generalized Functions and Partial Differential Equations, Gordon and Breach, Science Publishers, Inc., New York 1968.Google Scholar
  58. 58.
    Smart, J.R., Modern Geometries, Wadsworth, Belmont, CA., 1978.Google Scholar
  59. 59.
    Thielman, H.P., Theory of Functions of Real Variables, Prentice Hall, New York, 1953.MATHGoogle Scholar
  60. 60.
    Titchmarsh, E.C., Theory of Functions, Oxford University Press, 2nd ed., 1935.Google Scholar
  61. 61.
    Wang, S., Wu, A., and Rosenfeld, A., Image approximation from grayscale medial axis, IEEE Trans. PAMI 3: 687–696, 1981.CrossRefGoogle Scholar
  62. 62.
    Zadeh, L.A., Fuzzy sets, Inform. Contr. 8: 338–353, 1965.MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Zadeh, L. A., Calculus of fuzzy restrictions, IN: L. A. Zadeh et al., Eds., Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press, London 1–39, 1975.Google Scholar
  64. 64.
    Zucker, S. W., Region growing: childhood and adolescence, Comput. Graphics Image Process. 5: 382–399, 1976.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • John N. Mordeson
    • 1
  • Premchand S. Nair
    • 2
  1. 1.Center for Research in Fuzzy Mathematics and Computer ScienceCreighton UniversityOmahaUSA
  2. 2.Department of Mathematics and Computer ScienceCreighton UniversityOmahaUSA

Personalised recommendations