Advertisement

Fuzzy Topological Spaces

  • John N. Mordeson
  • Premchand S. Nair
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 20)

Abstract

Topology has its roots in geometry and analysis. From a geometric point of view, topology was the study of properties preserved by a certain group of transformations, namely the homeomorphisms. Certain notions of topology are also abstractions of classical concepts in the study of real or complex functions. These concepts include open sets, continuity, connectedness, compactness, and metric spaces. They were a basic part of analysis before being generalized in topology.

Keywords

Topological Space Grey Level Fuzzy Subset Normed Linear Space Iterate Function System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abd El-Hakeim, K.M., Some weakly forms of fuzzy continuous mappings in fuzzy bitopological spaces, J. Fuzzy Math. 5: 455–469, 1997.MathSciNetMATHGoogle Scholar
  2. 2.
    Alderton, I.W., Function spaces in fuzzy topology, Fuzzy Sets and Systems 32: 115–124, 1989.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ali, D.M., On the Ri—property in fuzzy topology, Fuzzy Sets and Systems 50: 97–101, 1992.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ali, D.M., Wuyts, P., and Srivasta, A.K., On the Ro—property in fuzzy topology, Fuzzy Sets and Systems 38: 97–113, 1990.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aydin, S., U—topologies on X x (0,1) generated by fuzzy topologies, J. Fac. Sci. Karadeniz Tech. Univ. 4: 10–16, 1981.MathSciNetMATHGoogle Scholar
  6. 6.
    Aygun, H., Warner, M.W., and Kudri, S.R.T., On smooth L-fuzzy topological spaces, J. Fuzzy Math. 5: 321–338, 1997.MathSciNetGoogle Scholar
  7. 7.
    Balasubramanian, G., On extensions of fuzzy topologies, Kybernetika (Prague) 28: 239–244, 1992.MATHGoogle Scholar
  8. 8.
    Balasubramanian, G., Maximal fuzzy topologies, Kybernetika (Prague) 312: 459–464, 1995.Google Scholar
  9. 9.
    Barnsley, M.F., Fractals Everywhere, Academic Press, San Diego, 1988.MATHGoogle Scholar
  10. 10.
    Barnsley, M.F. and Demko, S., Iterated functions systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399: 243–275, 1985.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Beer, G.A., Starshaped sets and the Hausdorff metric, Pacific J. Math. 61: 21–27, 1975.MathSciNetMATHGoogle Scholar
  12. 12.
    Berger, M.A., Images generated by orbits of 2-D Markov chains, CHANCE 2: 18–28, 1989.Google Scholar
  13. 13.
    Butanariu, D., L-fuzzy topologies, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) 19(67): 227–236, 1975 (1977).Google Scholar
  14. 14.
    Cabrelli, C.A., Forte, B., Molter, U.M., and Vrscay, E.R., Iterated fuzzy sets systems: A new approach to the inverse problem for fractals and other sets, J. Math. Anal. Appl. 171: 79–100, 1992.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Cerruti, U., “Nonstandard” concepts in fuzzy topology, Advances in fuzzy sets, possibility theory, and applications 49–57, Plenum, New York-London 1983.Google Scholar
  16. 16.
    Chakrabortry, M.K. and Ahsanullah, T.M.G., Fuzzy topology on fuzzy sets and tolerance topology, Fuzzy Sets and Systems 45: 103–108, 1992.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chang, C.L., Fuzzy topological spaces, J. Math. Anal. Appl. 24: 182–190, 1968.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Chattopadhyay, K.C., Hazra, R.N., and Samanta, S.K., Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49: 237–242, 1992.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Chattopadhyay, K.C. and Samanta, S.K., Fuzzy topology; fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54: 207–212, 1993.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Chaudhuri, A.K. and Das, P., T-product fuzzy topology, Fuzzy Sets and Systems 56: 303–308, 1993.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Chaudhuri, A.K. and Das, P., Some results on fuzzy topology on fuzzy sets, Fuzzy Sets and Systems 56: 331–336, 1993.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Choubey, A. and Srivastava, A.K., On an epireflective hull in fuzzy topology, J. Fuzzy Math. 2: 43–46, 1994.MathSciNetMATHGoogle Scholar
  23. 23.
    Christoph, F.T., Quotient fuzzy topologies and local compactness, J. Math. Anal. Appl. 57: 497–504, 1977.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Coulon, J. and Coulon, J-L., The spectrum of a separated presheaf and the relation between totally fuzzy subsets and fuzzy subsets; application to fuzzy topology, Portugal. Math. 46: 47–57, 1989.MathSciNetMATHGoogle Scholar
  25. 25.
    Coulon, J. and Coulon, J-L., Sur la definition d’une topologie floue, (French) on the definition of a fuzzy topology, Rev. Roumaine Math. Pures Appl. 41: 155–161, 1996.MathSciNetMATHGoogle Scholar
  26. 26.
    Cuchillo-Ibanez, E., Covering dimension in fuzzy topological spaces, J. Fuzzy Math. 5: 97–102, 1997.MathSciNetMATHGoogle Scholar
  27. 27.
    De Baets, B. and Mesiar, R., Pseudo-metrics and T-equivalences, J. Fuzzy Math. 5: 471–481, 1997.MATHGoogle Scholar
  28. 28.
    De Mitri, C. and Pascali, E., On sequential compactness and semi-compactness in fuzzy topology, J. Math. Anal. Appl. 324–327, 1983.Google Scholar
  29. 29.
    De Mitri, C. and Pascali, E., Characterization of fuzzy topologies from neighborhoods of fuzzy points, J. Math. Anal. Appl. 1–14, 1983.Google Scholar
  30. 30.
    Diamond, P., A note on fuzzy starshaped fuzzy sets, Fuzzy Sets and Systems 37: 193–199, 1990.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Diamond, P. and Kloeden, P., Characterization of compact subsets of fuzzy sets, Fuzzy Sets and Systems 29: 341–348, 1989.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Diamond, P. and Kloeden, P., Metric spaces of fuzzy sets, Fuzzy Sets and Systems 35: 241–249, 1990.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Diamond, P. and Kloeden, P., Metric Spaces of Fuzzy Sets, Theory and Applications, World Scientific, Singapore, New Jersey, London, Hong Kong 1994.Google Scholar
  34. 34.
    Dubois, D. and Prade, H., Fuzzy Sets and systems: Theory and Applications, Academic Press, New York, 1980.MATHGoogle Scholar
  35. 35.
    Eklund, P., A comparison of lattice-theoretic approaches to fuzzy topology, Fuzzy Sets and Systems 19: 81–87, 1986.MathSciNetMATHGoogle Scholar
  36. 36.
    Eklund, P., Categorical fuzzy topology, Acta Acad. Abo. Ser. B 46: 113, 1986.MathSciNetGoogle Scholar
  37. 37.
    Eklund, P. and Gahler, W., Basic notions for fuzzy topology I, Fuzzy Sets and Systems 26: 333–356, 1988.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Eklund, P. and Gahler, Basic notions for fuzzy topology II, Fuzzy Sets and Systems 27: 171–195, 1988.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Erturk, R., Separation axioms in fuzzy topology characterized by bitopologies, Fuzzy Sets and Systems 58: 209–216, 1993.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Falconer, K.J., The Geometry of Fractal Sets, Cambridge Univ. Press, London/New York, 1985.Google Scholar
  41. 41.
    Fora, A.A., Separation axioms, subspaces and product spaces in fuzzy topology, Arab Gulf J. Sci. Res. 8: 1–16, 1990.MathSciNetMATHGoogle Scholar
  42. 42.
    Gahler, W., Fuzzy Topology, Topology, measures, and fractals (Warne-munde, 1991 ) 188–197.Google Scholar
  43. 43.
    Gahler, W., The general fuzzy filter approach to fuzzy topology I, II, Fuzzy Sets and Systems 76:205–224, 225–246, 1995.Google Scholar
  44. 44.
    Gal, S.G., Measures of noncompactness for fuzzy sets, J. Fuzzy Math. 5: 309–320, 1997.MathSciNetMATHGoogle Scholar
  45. 45.
    Garcia, J.G. and Sostak, A.P., On even fuzzy topologies, Mathematics 109–122 Latv. Univ. Zinât Raksti, Latv. Univ., Riga, 1994.Google Scholar
  46. 46.
    Gerla, G., Representations of fuzzy topologies, Fuzzy Sets and Systems 11: 103–113, 1983.MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Ghanim, M.N., Kerre, E.E., and Mashour, A.S., Separation Axioms, subspaces and sums in fuzzy topology, J. Math. Anal. Appl. 102 (1984) 189–202.MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Ghanim, M.N. and Mashour, A.S., Characterization of fuzzy topologies by s-neighborhood systems, Fuzzy Sets and Systems 9: 211–213, 1983.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Ghanim, M.H. and Morsi, N.N., Productivity of cti-regularity in fuzzy topology, Simon Stevin 64: 351–364, 1990.MathSciNetMATHGoogle Scholar
  50. 50.
    Ghanim, M.H. and Morsi, N.N., ca-axioms in fuzzy topology, Simon Stevin 63: 193–208, 1989.MathSciNetMATHGoogle Scholar
  51. 51.
    Ghosh, B., On 0-equivalent and 6-equivalent fuzzy topologies, Bull. Malasian Math. Soc. (2) 13: 69–78, 1990.MATHGoogle Scholar
  52. 52.
    Gurcay, H., Coker, D., and Es, A.H., On fuzzy continuity in intuionistic fuzzy topological spaces, J. Fuzzy Math. 5: 365–378, 1997.MathSciNetGoogle Scholar
  53. 53.
    Hamburg, P. and D. Bâcanu, D., Les sous-suites dans les topologies floues (French) [Subsequences in fuzzy topologies] Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1984 ), 57–64, Preprint, 84–6, Univ. Babes-Bolyai,“ Cluj-Napoca, 1984.Google Scholar
  54. 54.
    Hamburg, P., Topologies et proximities flous, (French), Studia Sci. Math. Hungar. 18: 293–307, 1983.MathSciNetMATHGoogle Scholar
  55. 55.
    Hanafy, I.M., 6-compactness in fuzzy topological spaces, J. Fuzzy Math. 5: 277–284, 1997.MathSciNetMATHGoogle Scholar
  56. 56.
    Hazra, R.N., Samanta, S.K., and Chattopadhyay, K.C., Fuzzy topology redefined, Fuzzy Sets and Systems 45: 79–82, 1992.MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Hohle, U., Probabilistic uniformization of fuzzy topologies, Fuzzy Sets and Systems 1: 311–332, 1978.MathSciNetCrossRefGoogle Scholar
  58. 58.
    Hohle, U., 5-fuzzy topologies on algebraic structures, J. Math. Anal. Appl. 108: 113–150, 1985.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Hohle, U., Fuzzy topologies and topological space objects in a topos, Fuzzy Sets and Systems 19: 299–304, 1986.MathSciNetCrossRefGoogle Scholar
  60. 60.
    Hutchinson, J., Fractals and self-similarity, Indiana Univ. Math. J. 30: 713–747, 1981.MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Hutton, B.W., Normality in fuzzy topological spaces, Dept. of Math., U. Auckland, New Zealand, Robert series No. 49, Feb. 1974.Google Scholar
  62. 62.
    Hutton, B.W., Uniformities on fuzzy topological spaces, Dept. of Math., U.Auckland, New Zealand, Report Series N. 50., Feb. 1974.Google Scholar
  63. 63.
    J. Jacas, J., Fuzzy topologies induced by S-metrics, J. Fuzzy Math. 1 (1993) 173–191.MathSciNetMATHGoogle Scholar
  64. 64.
    Jha, P.K., Pradeep, K., and Singh, T.B., Some local properties of fuzzy topology and fuzzy topological groups, Bull. Calcutta Math. Soc. 87: 441–448, 1995.MathSciNetMATHGoogle Scholar
  65. 65.
    Jiang, J.G., The relations between L-fuzzy topologies on spaces of probability measures, Math. Nachr. 115: 33–57, 1984.MathSciNetCrossRefGoogle Scholar
  66. 66.
    Jin, C.Z., A survey of some developments in fuzzy topology, (Chinese) Dongbei Shida Xuebao 53–67, 1981.Google Scholar
  67. 67.
    Johnson, T.P., On the lattice of fuzzy topologies I, Fuzzy Sets and Systems 48: 133–135, 1992.MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Kaleva, O., On the convergence of fuzzy sets, Fuzzy Sets and Systems 17: 53–65, 1985.MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Katsaras, A.K. and Petalas, C.G., A unified theory of fuzzy topologies, fuzzy proximities and fuzzy uniformities, Rev. Roumaine Math. Pures Appl. 28: 845–856, 1983.MathSciNetMATHGoogle Scholar
  70. 70.
    Katsaras, A.K., and Petalas, C.G., Fuzzy topologies and fuzzy quasi-uniformities, Rad. Mat. 4: 15–29, 1988.MathSciNetMATHGoogle Scholar
  71. 71.
    Kelly, J.L., General Topology, Van Nostrand, Princeton, New Jersey, 1955.Google Scholar
  72. 72.
    Kerre, E.E., Nouh, A.A., and Kandil, A., Operations on the class of fuzzy sets on a universe endowed with a fuzzy topology, J. Math. Anal. Appl. 180: 325–341, 1993.MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Kerre, E.E. and Ottoy, P.L., On cr-generated fuzzy topologies, Fasc. Math. 127–134, 1990.Google Scholar
  74. 74.
    Klein, A.J., cx-closure in fuzzy topology, Rocky Mountain J. Math. 11: 553–560, 1981.MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Klein, A.J., Generating fuzzy topologies with semiclosure operators, Fuzzy Sets and Systems, 267–274, 1983.Google Scholar
  76. 76.
    Klein, A.J., Fuzzy topologies with specified level properties, Fuzzy Sets and Systems, 21: 233–241, 1987.MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Klein, A.J., When is a fuzzy topology topological? Rocky Mountain J. Math. 17: 15–18, 1987.MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Klement, E.P., Puri, M.L., and Ralescu, D.A., Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407: 171–182, 1986.MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Kloeden, P.E., Chaotic difference equations in R’z, J. Austral. Math. Soc. Ser. A 31: 217–225, 1981.MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Kloeden, P.E., Cycles and chaos in higher dimensional difference equations, in: Yu. A. Mitroplsky, Ed., Proc. 9th Internat. Con f. Nonlinear Oscillations, Vol. 2 (Kiev Naukova Dumka) 184–187, 1984.Google Scholar
  81. 81.
    Kloeden, P.E., Chaotic iterations of fuzzy sets, Fuzzy Sets and Systems, 42: 37–42, 1991.MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Kloeden, P.E. and Mees, A.I., Chaotic phenomena, Bull. Math. Biol. 47: 697–738, 1985.MathSciNetMATHGoogle Scholar
  83. 83.
    Kotze, W. and Kubiak, T., Fuzzy topologies of Scott continuous functions and their relation to the hypergraph functor, Quaestiones Math. 15: 175–187, 1992.MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Kudri, S.R.T., Erratum: Compactness in L—fuzzy topological spaces, Fuzzy Sets and Systems 67:329–336, 1994; countability in L—fuzzy topology, Fuzzy Sets and Systems 84: 117, 1996.MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Kudri, S.R.T., Compactness in L—fuzzy topological spaces; countability in L—fuzzy topology, Fuzzy Sets and Systems 67: 329–336, 1994.MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Kudri, S.R.T., Countability in L—fuzzy topology, Fuzzy Sets and Systems 71: 241–249, 1995.MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Li, Z.F., On a generalization on C. T. Yang’s theorem concerning derived sets in fuzzy topology, (Chinese) Fuzzy Math. 1: 39–41, 1981.MathSciNetGoogle Scholar
  88. 88.
    Li, T.Y. and Yorke, J.A., Period three implies chaos, Amer. Math. Monthly 82: 985–992, 1975.MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Liu, Y., Fuzzy topology and topology on lattice, Progr. Natur. Sci. (English Ed.) 6:129–133, 1966.Google Scholar
  90. 90.
    Liu, Y.M., Topologies on lattices and fuzzy topology (Chinese) Sichuan Daxue Xuebao 43–52, 1986.Google Scholar
  91. Liu, Y.M. and Liang, J.H., Fuzzy topology—stratification and the pointed approach (Chinese) Adv. in Math. (China) 23:304–321, 1994.Google Scholar
  92. 92.
    Liu, Y-M. and Luo, M-K., Fuzzy Topology, Vol. 9, World Scientific, Singapore, New Jersey, London, Hong Kong, 1997.Google Scholar
  93. 93.
    Lowen, R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56: 621–633, 1976.MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Lowen, E. and Lowen, R., The role of the diagonal operator in fuzzy topology. Mathematics and fuzziness, Part I (Palma 1985), Fuzzy Sets and Systems 27: 53–61, 1988.MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    Lowen, E., Lowen, R., and Wuyts, P., The categorial topology approach to fuzzy topology and fuzzy convergence, Fuzzy Sets and Systems 40: 347–373, 1991.MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Lowen, R., Initial and final fuzzy topologies and the fuzzy Tychonoff theorem, J. Math. Anal. Appl. 58: 11–21, 1977.MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Lowen, R., Convergence in a localizable fuzzy topology on spaces of probability measure. Convergence structures 1984 (Bechynve, 1984 ) 217–226, Math. Res., 24, Akademie-Verlag, Berlin, 1985.Google Scholar
  98. 98.
    Lowen, R. and Wuyts, P., Concerning the constants in fuzzy topology, J. Math. Anal. Appl. 129: 256–268, 1988.MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Mashour, A.S. and Abd El-Hakeim, K.M., On semiregularization fuzzy topologies, J. Fuzzy Math. 2: 271–280, 1994.MathSciNetGoogle Scholar
  100. 100.
    Mashour, A.S., Ghanim, M.H., El-Wakeil, A.N., and Morsi, N.N., The productivity classes of fuzzy topologies. Third symposium (Assiut, 1985) Bull. Fac. Sci. Assiut Univ. A 14: 1–14, 1986.Google Scholar
  101. 101.
    Mashour, A.S., Ghanim, M.H., El-Wakeil, A.N., and Morsi, N.N., Semi-induced fuzzy topologies, Fuzzy Sets and Systems 31: 351–368, 1989.MathSciNetCrossRefGoogle Scholar
  102. 102.
    Mashour, A.S., Ghanim, M.H., El-Wakeil, A.N., and Morsi, N.N., The productivity classes of fuzzy topologies, Fuzzy Sets and Systems 53: 193–201, 1993.MathSciNetCrossRefGoogle Scholar
  103. 103.
    May, R.M., Simple mathematical models with very complicated dynamics, Nature 261: 459–467, 1976.CrossRefGoogle Scholar
  104. 104.
    McLean, R.G. and Warner, M.W., Locale theory and fuzzy topology, Fuzzy Sets and Systems 54:91— 97, 1993.Google Scholar
  105. 105.
    Michalek, J., Fuzzy topologies, Kybernetika (Prague) 11: 345–354, 1975.MathSciNetMATHGoogle Scholar
  106. 106.
    Mohannadi, F.K. and Warner, M.W., A note on induced and coinduced fuzzy topologies, Fuzzy Sets and Systems 27: 205–209, 1988.MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Mo, Z.W. and Liu, W.J., Conditions for an L—fuzzy topology to be generated by a unique quasiproximity structure (Chinese) Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 16: 21–23, 1993.MathSciNetGoogle Scholar
  108. 108.
    Nishimura, T., Fuzzy monad theory and fuzzy topology, Math. Japon. 31: 895–926, 1986.MathSciNetMATHGoogle Scholar
  109. 109.
    Papageorgiou, N.S., Fuzzy topology and fuzzy multifunctions, J. Math. Anal. Appl. 109: 397–425, 1985.MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Petri and Zlata, Ro and R axioms in fuzzy topology, Mat. Vesnik 41: 21–28, 1989.MathSciNetGoogle Scholar
  111. 111.
    Petri and Zlata, Weak forms of continuity in fuzzy topology, Mat. Vesnik 42: 35–44, 1990.MathSciNetGoogle Scholar
  112. 112.
    Pu, B.M. and Liu, Y.M., Product and quotient spaces in fuzzy topology (Chinese) Kexue Tongbao 24: 97–100, 1979.MathSciNetMATHGoogle Scholar
  113. 113.
    Pu, B.M. and Liu, Y.M., Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76: 571–599, 1980.MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Pu, B.M. and Liu, Y.M., Fuzzy topology II, Product and quotient spaces, J. Math. Anal. Appl. 77: 20–37, 1980.MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Pu, B.M. and Liu, Y.M., A survey of some aspects on the research work of fuzzy topology in China, J. Math. Res. Exposition 2: 167–172, 1982.MathSciNetGoogle Scholar
  116. 116.
    Pu, B.M. and Liu, Y.M., A survey of some aspects on the research work of fuzzy topology in China, Advances in fuzzy sets, possibility theory, and applications, 31–36, Plenum, New York-London, 1983.Google Scholar
  117. 117.
    Pujate, L. and Sostak, A., On zero-dimensionality in fuzzy topology, Serdica 16: 285–288, 1990.MathSciNetMATHGoogle Scholar
  118. 118.
    Qui, D., Fuzzifying conpactifications, J. Fuzzy Math. 5: 251–262, 1997.MathSciNetGoogle Scholar
  119. 119.
    Ramadan, A.A., Smooth filter structures, J. Fuzzy Math. 5: 297–308, 1997.MathSciNetMATHGoogle Scholar
  120. 120.
    Rodabaugh, S.E., A categorical accommodation of various notions of fuzzy topology, Proceedings of the Third International Seminar on Fuzzy Set Theory (Linz, 1981 ) 119–152, Johannes Kepler Univ., Linz, 1981.Google Scholar
  121. 121.
    Rodabaugh, S.E., A categorical accommodation of various notions of fuzzy topology, Fuzzy Sets and Systems 9: 241–265, 1983.MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    Rodabaugh, S.E., Errata: A categorical accommodation of various notions of fuzzy topology, Fuzzy Sets and Systems (1983) 241–265, Complete fuzzy topological hyperfields and fuzzy multiplication in the fuzzy real lines, ibid. (1985) 285–310 Fuzzy Sets and Systems 20: 107–108, 1986.MathSciNetMATHGoogle Scholar
  123. 123.
    Rodabaugh, S.E., Dynamic topologies and their applications to crisp topologies, fuzzifications of crisp topologies on the crisp real line, J. Math. Anal. Appl. 131: 25–66, 1988.MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Rodabaugh, S.E. and Lowen, S.E., para-Lowen, and a—level functors and fuzzy topologies on the crisp real line, J. Math. Anal. Appl. 131: 157–169, 1988.MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Rosa, M.V., Separation axioms in fuzzy topology fuzzy convexity spaces, J. Fuzzy Math. 2: 611–621, 1994.MathSciNetMATHGoogle Scholar
  126. 126.
    Rosa, M.V., On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets and Systems 62: 97–100, 1994.MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Sarma, R.D. and Jha, P.K., Fuzzy net-theoretic approach and Lowen’s Category, J. Fuzzy Math. 5: 159–163, 1997.MathSciNetMATHGoogle Scholar
  128. 128.
    Shi, F.G., Fuzzy derived operators induced by ordinary derived operators and fuzzy topologies induced by derived operators (Chinese) Mohu Xitong yu Shuxue 5: 32–37, 1991.MathSciNetMATHGoogle Scholar
  129. 129.
    Shostaki, A.P., Fuzzy topology, Edited by U. Hohle, S. E. Rodabaugh, and A. v Sostak, Fuzzy Sets and Systems 73 (1995) no. 1, North-Holland Publishing Co., Amsterdam 1995 1–11 and 1–183.Google Scholar
  130. 130.
    Shostaki, A.P., Two decades of fuzzy topology: the main ideas, concepts and results. (Russian) Uspekhi Mat. Nauk 203:99–147, 1989; translation in Russian Math. Surveys 44: 125–186, 1989.CrossRefGoogle Scholar
  131. 131.
    Sostak, A.P., On a category for fuzzy topology, Zb. Rad. 61-67,1988.Google Scholar
  132. 132.
    Sostak, A., On some modifications of fuzzy topology, Mat. Vesnik 41: 61–64, 1989.Google Scholar
  133. 133.
    Sostak, A., On the concept of E—regularity for fuzzy topology, Mat. Vesnik 41: 199–209, 1989.MathSciNetMATHGoogle Scholar
  134. 134.
    Sostak, A., Topological properties of a fuzzy space as location properties of its fuzzy topology in the Tychonoff cube, Mathematics I (Russian) 97–104, 1990.MathSciNetGoogle Scholar
  135. 135.
    Sostak, A.P., Basic structures of fuzzy topology. Topology 2, J. Math. Sci. 78: 662–701, 1996.MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Srivastava, A.K. and Srivastava, R., The Sierpinski object in fuzzy topology, Modern analysis and its applications (New Delhi, 1983 ) 1725, Prentice-Hall of India, New Delhi, 1986.Google Scholar
  137. 137.
    Srivastava, R., On separation axioms in a newly defined fuzzy topology, Fuzzy Sets and Systems 62: 341–346, 1994.MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    Sun, C.L., Homotopy and fundamental group in fuzzy topology, Dong-bei Shida Xuebao no. 2 25–31, 1985.Google Scholar
  139. 139.
    Tarasov, V.B. and Shostak, A.P., fuzzy modeling in cognitive processes (Russian) Fuzzy Systems: models and program tools (Russian) 43–48, Tver. Cos. Univ. Tver., 1991.Google Scholar
  140. 140.
    Vitale, R.A., L, metrics for compact convex sets, J. Approx. Theory 45: 280–287, 1985.MathSciNetMATHCrossRefGoogle Scholar
  141. 141.
    Wang, G.J., Difficulties with the neighborhood method in fuzzy topology (Chinese), Fuzzy Math. 2: 113–116, 1982.Google Scholar
  142. 142.
    Wang, G.J., Fifteen years of fuzzy topology (Chinese) Fuzzy Math. 4: 97–109, 1984.MathSciNetMATHGoogle Scholar
  143. 143.
    Wang, G.J., Some research directions in fuzzy topologies (Chinese) J. Math. Res. Exposition 7: 357–365, 1987.MathSciNetMATHGoogle Scholar
  144. 144.
    Wang, G.P., A decomposition theorem for fuzzy sets and its application in fuzzy topology (Chinese), Krexue Tonbao 26 no. 5, 259–262, 1981.Google Scholar
  145. 145.
    Warner, M.W., Fuzzy topology with respect to continuous lattices, Fuzzy Sets and Systems 35: 85–91, 1990.MathSciNetMATHCrossRefGoogle Scholar
  146. 146.
    Warren, R.H., Fuzzy topologies characterized by neighborhood systems, Rocky Mountain J. Math. 9: 761–764, 1979.MathSciNetMATHCrossRefGoogle Scholar
  147. 147.
    Warren, R.H., Convergence in fuzzy topology, Rocky Mountain J. Math. 13: 31–36, 1983.MathSciNetMATHCrossRefGoogle Scholar
  148. 148.
    Wong, C.K., Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl. 45: 512–521, 1974.MathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    Wong, C.K., Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46: 316–328, 1974.MathSciNetMATHCrossRefGoogle Scholar
  150. 150.
    Wong, C.K., Fuzzy topology. Fuzzy sets and their applications to cognitive decision processes (Proc. U. S.-Japan Sem. Univ. Calif., Berkeley. Calif., 1974) 171–190 Academic Press, New York, 1975.Google Scholar
  151. 151.
    Yi, Y., Level structures of fuzzy topology (Chinese), Acta Math. Sinica 34: 729–736, 1991.MathSciNetMATHGoogle Scholar
  152. 152.
    Ying, M.S., A notion of compactness of covering type in fuzzy topology (Chinese), Acta Math. Sinica 37: 852–856, 1994.MathSciNetMATHGoogle Scholar
  153. 153.
    Ying, M.S., A new approach for fuzzy topology I, Fuzzy Sets and Systems 39: 303–321, 1991.MathSciNetMATHCrossRefGoogle Scholar
  154. 154.
    Ying, M.S., A new approach for fuzzy topology II, Fuzzy Sets and Systems 47: 221–232, 1992.MathSciNetMATHCrossRefGoogle Scholar
  155. 155.
    Ying, M.S., A new approach for fuzzy topology III, Fuzzy Sets and Systems 55: 193–207, 1993.MathSciNetMATHCrossRefGoogle Scholar
  156. 156.
    Ying, M.S., On the method of neighborhood systems in fuzzy topology, Fuzzy Sets and Systems 68: 227–238, 1994.MathSciNetMATHCrossRefGoogle Scholar
  157. 157.
    Yu, D., Two new L—fuzzy topologies on R(L), Fuzzy Sets and Systems 76: 379–385, 1995.MathSciNetMATHCrossRefGoogle Scholar
  158. 158.
    Zahran, A.M., Fuzzy 6—continuity, fuzzy almost regularity (normality) on fuzzy topology on fuzzy sets, J. Fuzzy Math. 3: 89–96, 1995.MathSciNetMATHGoogle Scholar
  159. 159.
    Zhao, D.Q., Fuzzy topology—lattice topology—latticelyzed topology, Mohu Xitong yu Shuxue 5: 49–54, 1991.MathSciNetMATHGoogle Scholar
  160. 160.
    Zhao, X.D., Representation theorem of fuzzy lattices and its applications in fuzzy topology, Fuzzy Sets and Systems, 25: 125–128, 1988.MathSciNetMATHCrossRefGoogle Scholar
  161. 161.
    Zhang, D.X., The stratified canonical fuzzy topology on 1(L) is uniformizable, Fuzzy Sets and Systems 54: 225–227, 1993.MathSciNetMATHCrossRefGoogle Scholar
  162. 162.
    Zhang, D.X., The stratified canonical fuzzy topology on I(L) is uniformizable, J. Math. Anal. Appl. 170: 65–74, 1992.MathSciNetMATHCrossRefGoogle Scholar
  163. 163.
    Zhang, F.X. and Zheng, Y.L., Fuzzy stratiform topologies of fuzzy topologies (Chinese) J. Baoji College Arts Sci. Nat. Sci. 16: 1–4, 1996.MATHGoogle Scholar
  164. 164.
    Zheng, Y.L., A—cut topologies III (Chinese) Heilongjiang Daxue Ziran Kexue Xuebao 11: 18–21, 1994.MATHGoogle Scholar
  165. 165.
    Zheng, Y.L. and Du, X.C., A—cut topologies of L—fuzzy topologies IV, (Chinese) J. Baoji College Arts Sci. Nat. Sci. 16: 1–3, 1996.MathSciNetGoogle Scholar
  166. 166.
    Zhou, F.Y., The relative interiors of convex fuzzy sets under induced fuzzy topology, Fuzzy Sets and Systems 44: 109–125, 1991.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • John N. Mordeson
    • 1
  • Premchand S. Nair
    • 2
  1. 1.Center for Research in Fuzzy Mathematics and Computer ScienceCreighton UniversityOmahaUSA
  2. 2.Department of Mathematics and Computer ScienceCreighton UniversityOmahaUSA

Personalised recommendations