Skip to main content

Awareness Monitoring and Decision-Making for General Anaesthesia

  • Chapter
  • 296 Accesses

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 83))

Abstract

The measure went of anaesthetic depth during surgical anaesthesia has always been an inexact science where the experience of the anaesthetist is called upon to provide the control of drug administration. The anaesthetist has to maintain the patient at a suitable level of sedation by carefully controlling several anaesthetic drugs so that the surgical procedure can proceed without causing awareness in the patient. There have been many publications on the subject that have shed much light on the subject and which has as a result improved the control of anaesthetic depth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška, R., and Verbruggen, H.B. (1996). “An overview of fuzzy modelling for control,” Control Engineering Practice, 4(11), 1593–606.

    Article  Google Scholar 

  2. Bersini, H., and Bontempi, G. (1997). “Now comes the time to defuzzify neuro-fuzzy models”, Fuzzy Sets and Syst., 90, 161–169.

    Article  Google Scholar 

  3. Bezdek, J.C., and Adderson, I.M. (1985). “An application of the c-varieties clustering algorithms to polygonal curve fitting,” IEEE Transactions on Systems man and Cybernetics, 15(5), 637–41.

    Article  Google Scholar 

  4. Bishop, C.M. (1995). Neural Networks for Pattern Recognition, Oxford University Press, New York

    Google Scholar 

  5. Chen, G., Pham, T.T., and Weiss, J.J. (1995). “Fuzzy modelling of control systems,” IEEE Transactions on Aerospace and Electronic Systems, 31(1), 414–428.

    Article  Google Scholar 

  6. Daubechies, I. (1988). “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 41, 909–96.

    Article  Google Scholar 

  7. Dio, M., Gajarj, R.J., Mantzaridis, H., and Kenny, G.N. (1997). “Relationship between calculated blood concentration of propofol and electrophysiological varialbs during emergence from anaesthesia: comparison of bispectral index, spectral edge frequency, median frequency and auditory evoked potential index,” British Journal of Anaesthesia, 78(2), 180–184.

    Article  Google Scholar 

  8. Dio, M., Gajarj, R.J., Mantzaridis, H., and Kenny, G.N. (1999). “Prediction of movement at laryngeal mask airway insertion: comparison of auditory evoked potential index, bispectral index, spectral edge frequency and median frequency,” British Journal of Anaesthesia, 82(2), 203–207.

    Article  Google Scholar 

  9. Elkfafi, M. (1995). “Intelligent signal processing in anaesthesia,” PhD Thesis, University of Sheffield, Sheffield.

    Google Scholar 

  10. Gajarj, R.J., Dio, M., Mantzaridis, H., and Kenny, G.N. (1998). “Analysis of the EEG bispectrm, auditory evoked potentials and the EEG power spectrum during repeated transitions from consciousness to unconsciousness,” British Journal of Anaesthesia, 80(1), 46–52.

    Article  Google Scholar 

  11. Glass, P.S., Goodman, D.K., Ginsberg, B., Reeves, J.G., and Jacobs, J.R. (1989). “Accuracy of pharmacokinetic model-driven infusion of propofol,” Anesthesiology, 71(3A), A277.

    Article  Google Scholar 

  12. Glass, P.S.A., Jacobs, J.R., Smith, L.R., Ginsberg, B., Quill, T.J., Bai, S.A., and Reves, J.G. (1990). “Pharmacokinetic model-driven infusion of fentanyl: assessment of accuracy,” Anesthesiology, 73, 1082–1090.

    Article  PubMed  CAS  Google Scholar 

  13. Isermann, R. (1997). “Special Issue: Application of neuro-fuzzy systems — Preface,” Fuzzy Sets and Systems, 89(3), 275.

    Article  Google Scholar 

  14. Linkens, D.A., Shieh, J.S., and Peacock, J.E. (1994). “Machine-learning rulebased fuzzy logic control for depth of anaesthesia,” Proc. of the IEE Int. Conf. on Control ’94, Coventry, 31–36

    Google Scholar 

  15. Linkens, D.A., Abbod, M.F., and Backory, J. (1996a). “Fuzzy logic control of depth of anaesthesia using auditory evoked responses”, IEE Colloquium, Fuzzy Logic Controllers in Practice, London, 4/1–4/6

    Google Scholar 

  16. Linkens, D.A., Elkfafi, M., and Peacock, J.E. (1996b). “Intelligent processing of evoked potentials for monitoring depth of anaesthesia,” 16th International Symposium on Computing in Anaesthesia and Intensive Care, Rotterdam, The Netherlands.

    Google Scholar 

  17. Mortier, E., Struys, M., De-Smet, T., Versichelen, L., and Rolly, G. (1998). “Closed-loop controlled administration of propofol using bispectral analysis,” Anaesthesia, 53(8), 749–754.

    Article  PubMed  CAS  Google Scholar 

  18. Nayak, A., and Roy, R.J. (1998). “Anaesthesia control using midlatency auditory evoked potentials,” IEEE Transactions on Biomedical Engineering, 45(4), 409–21.

    Article  PubMed  CAS  Google Scholar 

  19. Samar, V.J., Swartz K.P., and Raghuveer, M.R. (1995). “Multiresolution analysis of event-related potentials by wavelet decomposition”, Brain and Cognition, 27, 398–438.

    Article  PubMed  CAS  Google Scholar 

  20. Schwender, D., Rimkus, T., Haessler, R., Klasing, S., Pöppel, E., and Peter, K. (1993). “Effects of increasing doses of alfentanil, fentanyl and morphine on mid-latency auditory evoked potentials,” British Journal of Anaesthesia, 71(5), 622–628.

    Article  PubMed  CAS  Google Scholar 

  21. Schwender, D., Golling, W., Klasing, S., Faber-Züllig, E., Pöppel, E., and Peter, K. (1994a). “Effects of surgical stimulation on midlatency auditory evoked potentials during general anaesthesia with propofol/fentanyl, isoflurane/fentanyl and flunitrazepam/fentanyl”, Anaesthesia, 49, 572–578.

    Article  PubMed  CAS  Google Scholar 

  22. Schwender, D., Faber-Züllig, E., Klasing, S., Pöppel, E., and Peter, K. (1994b). “Motor signs of wakefulness during general anaesthesia with propofol, isoflurane and flunitrazepam/fentanyl and midlatency auditory evoked potentials,” Anaesthesia, 49(6), 476–84.

    Article  PubMed  CAS  Google Scholar 

  23. Shafer, S.L., Siegel, L.C., Cooke, J.E., and Scott, J.C. (1988b). “Testing computer-controlled infusion pumps by simulation,” Anesthesiology, 68, 261–266.

    Article  PubMed  CAS  Google Scholar 

  24. Sharma, A., Griffith, R.L., and Roy, R.J. (1993). “An adaptive controller for the administration of closed-circuit anaesthesia during spontaneous and assisted ventilation,” Journal of Clinical Monitoring, 9, 25–30.

    Article  PubMed  CAS  Google Scholar 

  25. Shieh, J.S. (1994). “Hierarchical fuzzy logic monitoring and control in anaesthesia,” PhD Thesis, University of Sheffield, Sheffield.

    Google Scholar 

  26. Smith, W.D., Dutton, R.C., and Smith, N.T. (1996). “Measuring the performance of anaesthetic depth indicators,” Anesthesiology, 84(1), 38–51.

    Article  PubMed  CAS  Google Scholar 

  27. Takagi, T., and Sugeno, M. (1985). “Fuzzy identification of systems and its applications to modelling and control,” IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116–132.

    Article  Google Scholar 

  28. Thornton, C., Heneghan, C., Navaratnarajah, M., Bateman, P., and Jones, J. (1985). “Effect of Etomidate on the auditory evoked response in man,” BJA, 57, 554–561.

    Article  PubMed  CAS  Google Scholar 

  29. Thornton, C., and Newton, D.E.F. (1989). “The auditory evoked response: a measure of depth of anaesthesia,” Baillière’s Clinical Anaesthesiology, 3(3), 559–585.

    Article  Google Scholar 

  30. Thornton, C. (1991). “Evoked potentials in anaesthesia,” European Journal of Anaesthesiology, 8(2), 89–107

    PubMed  CAS  Google Scholar 

  31. Tracy, J. (1993). “Awareness in the operating room: a patient’s view”, Memory and Awareness in Anesthesia, P.S. Sebel, B. B. Bonke, and E. Winograd, eds., Prentice Hall, New Jersey, 349–353.

    Google Scholar 

  32. Veng-Pedersen, P., and Modi, N.B. (1992). “Perspectives in Pharmacokinetics. Neural Network in pharmacodynamic modelling. Is current modelling practice of complex kinetic systems at a dead end?,” Journal of Pharmacokinetics and Biopharmaceutics, 20(4), 397–412.

    PubMed  CAS  Google Scholar 

  33. Webb, A., Allen, R., and Smith, D. (1996). “Closed-loop control of depth of anaesthesia,” Measurement + Control, 29, 211–215.

    Google Scholar 

  34. White, M., Schenkels, M.J., Engbers, F.H., Vletter, A.,Burm, A.G., Bovill, J.G., and Kenny, G.N. (1999). “Effect sitemodelling of propofol using auditory evoked potentials,” British Journal of Anaesthesia, 82(3), 333–339.

    Article  PubMed  CAS  Google Scholar 

  35. Williams, J.R., and Amaratunga, K. (1994). “Introduction to wavelets in engineering,” International Journal for Numerical Methods in Engineering, 37, 2365–88.

    Article  Google Scholar 

  36. Yager, R.R. (1995). “Fuzzy sets as a tool for modelling,” Lecture Notes in Computer Science, 1000, 538–48.Thornton, C. (1991). “Evoked potentials in anaesthesia,” European Journal of Anaesthesiology, 8(2), 89–107.

    Google Scholar 

  37. Zadeh, L.A. (1969), “Biological application of the theory of fuzzy sets and systems,” Proceedings of the International Symposium on Biocybernetics of the Central Nervous system, 199–212.

    Google Scholar 

  38. Zadeh, L.A. (1994). “The role of fuzzy logic in modelling, identification and control,” Modelling, Identification and Control, 15(3), 191–203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Linkens, D.A., Abbod, M.F., Backory, J.K. (2002). Awareness Monitoring and Decision-Making for General Anaesthesia. In: Barro, S., Marín, R. (eds) Fuzzy Logic in Medicine. Studies in Fuzziness and Soft Computing, vol 83. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1804-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1804-8_4

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2498-8

  • Online ISBN: 978-3-7908-1804-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics