Skip to main content

An Integer Programming Approach to Inductive Learning Using Genetic and Greedy Algorithms

  • Chapter
New Learning Paradigms in Soft Computing

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 84))

Abstract

In this paper we propose an improved inductive learning method, IP2, to derive classification rules that correctly describe most of the examples belonging to a class and do not describe most of the examples not belonging to this class. A pre-analysis of data is included that assigns higher weights to those values of attributes which occur more often in the positive than in the negative examples. The inductive learning problem is represented as a modification of the set covering problem which are solved by an integer programming based algorithm using elements of a greedy algorithm or a genetic algorithm. The results are very encouraging and are illustrated on thyroid cancer and coronary heard disease problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker J.E. (1987) Reducing bias and inefficiency in the selection algorithm. In Genetic Algorithms and Their Applications: Proceedings of the 2nd International Conference on Genetic Algorithms. ed. J. J. Grefenstette, pp. 1421, LEA, Cambridge, MA.

    Google Scholar 

  • Balas E. (1980) Cutting planes from conditional bounds: a new approach to set covering. Mathematical Programming Study 12, 19–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Balas E. and Ho A. (1980) Set covering algorithms using cutting planes, heuristics and subgradient optimisation: A computation study. Mathematical Programming Study 12, 37–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Balas E. and Padberg M.W. (1979) Set partitioning - A survey. In: N. Christofides (ed.) Combinatorial Optimisation, Wiley, New York.

    Google Scholar 

  • Beasley J.E. (1987) An algorithm for set covering problem. European Journal of Operational Research 31, 85–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Beasley J.E. (1990) A Lagrangian heuristic for set covering problem. Naval Research Logistics 37, 151–164.

    Article  MathSciNet  MATH  Google Scholar 

  • Beasley J.E. and Jornsten K. (1992) Enhancing an algorithm for set covering

    Google Scholar 

  • problem. European Journal of Operational Research 58, 293–300.

    Google Scholar 

  • Beasley J.E., Chu P.C. (1994) A genetic algorithm for the set coverinproblem

    Google Scholar 

  • Technical Report, The Management School, Imperial College.

    Google Scholar 

  • Beasley J.E. (1996) A genetic algorithm for the set covering problem. European Journal of Operational Research 94, 392–404.

    Article  MATH  Google Scholar 

  • Christofides N. and Korman S. (1975) A computational survey of methods for the set covering problem. Management Science 21, 591–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Chvatal V. (1979) A greedy heuristic for the set-covering problem. Math. of Oper. Res. 4 (3) 233–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Croall I.F. and Mason J.P. (eds.) (1991), Industrial Applications of Neural Networks. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  • Etcheberry J. (1977) The set covering problem: A new implicit enumeration algorithm. Operations Research 25, 760–772.

    Article  MathSciNet  MATH  Google Scholar 

  • Garfinkel R. S. and Nemhauser G.L. (1978) Integer programming. John Wiley and Sons, New York-London-Sydney-Toronto.

    Google Scholar 

  • Grefenstette John J.(1990) Use’’s guide to GENESIS

    Google Scholar 

  • Grossman T and Wool A. (1995) Computational experience with approximation algorithms for the set covering problem. Working paper, Theoretical Division and CNLS, Los Alamos National Laboratory.

    Google Scholar 

  • Homaifar A., Lai S., Qi X. (1994) Constained optimization via genetic algorithms. Simulation, vol. 62, s. 242–254.

    Google Scholar 

  • Iwanski C. and Szkatula G. (1991) Inductive learning supported by integer programming. Computers and Artificial Intelligence 10, 57–66.

    MathSciNet  Google Scholar 

  • Jacobs L.W. and Brusco M.J. (1993) A simulated annealing-based heuristic for the set-covering problem. Working paper, Operations Management and Information Systems Department, Northern Illinois University, Dekalb, IL.

    Google Scholar 

  • Jefries C. (1991) Code Recognition and Set Selection with Neural Networks. Birkhauser, Boston.

    Book  Google Scholar 

  • Johnson D.A. (1974) Approximation algorithms for combinatorial problems. J. Computer System Sci. 9, 256–278.

    Article  MATH  Google Scholar 

  • Joines J.A., Houck C.R. (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problem with Gas. W: Michalewicz Z., Schaffer D., Schwefel H.P., Fogel D., Kitano H. (red.): Proceedings of the First IEEE International Conference on Evolutionary Computation, IEEE Service Center, Piscataway, NJ, vol.2,Orlando, 27–29 June, s. 579–584.

    Google Scholar 

  • Kacprzyk J. and Iwanski C. (1992) Fuzzy logic with linguistic quantifiers in inductive learning, In: L.A. Zadeh and J. Kacprzyk (Eds.), Fuzzy Logic for the Management of Uncertainty, Wiley, pp. 465–478.

    Google Scholar 

  • Kacprzyk J., Szkatula G. (1994) Machine learning from examples under errors in data, Proceedings of Fifth International Conference in Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’94 Paris France, Vol. 2, pp. 1047–1051.

    Google Scholar 

  • Kacprzyk J. and Szkatula G. (1996) An algorithm for learning from erroneous and incorrigible examples, Int. J. of Intelligent Syst. 11, pp. 565–582.

    Article  MATH  Google Scholar 

  • Kacprzyk J. and Szkatula G (1997a) An improved inductive learning algorithm with a preanalysis od data“, in Z.W. Ras and A. Skowron (eds.): Foundations of Intelligent Systems (Proceedings of 10th ISMIS’97 Symposium, Charlotte, NC, USA), Springer-Verlag, Berlin, pp. 157–166, 1997.

    Google Scholar 

  • Kacprzyk J. and Szkatula G. (1997b) Deriving IF-THEN rules for intelligent decision support via inductive learning“, in N.Kasabov et al. (eds.): Progress in Connectionist-Based Information Systems (Proceedings of ICONIP’97, ANZIIS’97 and ANNES’97 Conference, Dunedin, New Zealand), Springer, Singapore, vol. 2, pp. 818–821.

    Google Scholar 

  • Kacprzyk J. and Szkatula G. (1998) IP1 - An Improved Inductive Learning Procedure with a Preprocessing of Data. Proceedings of IDEAL’98 (Hong Kong), Springer-Verlag (in press).

    Google Scholar 

  • Kacprzyk J. and Szkatula G. (1999) An inductive learning algorithm with a preanalysis od data. International Journal of Knowledge - Based Intelligent Engineering Systems, vol. 3, pp. 135–146.

    Google Scholar 

  • Lovasz L. (1975) On ratio of optimal integral and fractional covers. Disc. Math. 13, 383–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Michalski R.S. (1983) A theory and methodology of inductive learning. In: R. Michalski, J. Carbonell and T.M. Mitchell (Eds.), Machine Learning. Tioga Press.

    Chapter  Google Scholar 

  • Michalski R.S., I. Mozetic, J. Hong and N. Lovrac (1986) The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. Proceedings of 5th Nat. Conference on Artificial Intelligence ( Philadelphia ). Morgan Kaufmann, pp. 1041–1045.

    Google Scholar 

  • Nakache J.P., Asselain B. (1983) Medical data set proposed for the workshop on data analysis. EIASM Workshop, April 1983.

    Google Scholar 

  • Paixao J. (1984) Algorithms for large scale set covering problems. PhD. Thesis, Department of Management Science, Imperial College, London SW7 2BX, England.

    Google Scholar 

  • Powell D., Skolnick M.M. (1993) Using genetic algorithms in engineering design optimization with non-linear constraints, W: Forrest S. (red.): Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, s. 424–430.

    Google Scholar 

  • Schoenauer M., Xanthakis S. (1993) Constrained GA optimization, W: Forrest S. (red.): Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, s. 573–580.

    Google Scholar 

  • Sen S. (1993) Minimal cost set covering using probabilistic methods. Proc. 1993 ACM/SIGAPP Symposium on Applied Computing, 157–164.

    Google Scholar 

  • Szkatula G. (1996) Machine learning from examples under errors in data, Ph.D. thesis, SRI PAS Warsaw, Poland.

    Google Scholar 

  • Thurn S. et al. (1991) The MONK’s Problems. A Performance Comparison of Different Learning Algorithms. Carnegie-Mellon University, Rep. CMU-CS91–197.

    Google Scholar 

  • Vercellis C. (1984) A probabilistic analysis of the set covering problem. Annals of Oper. Research 1, 255–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kacprzyk, J., Szkatuła, G. (2002). An Integer Programming Approach to Inductive Learning Using Genetic and Greedy Algorithms. In: Jain, L.C., Kacprzyk, J. (eds) New Learning Paradigms in Soft Computing. Studies in Fuzziness and Soft Computing, vol 84. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1803-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1803-1_11

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2499-5

  • Online ISBN: 978-3-7908-1803-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics