Several notions of differentiability for fuzzy set-valued mappings

• Luis J. Rodríguez-Muñiz
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 87)

Abstract

This paper presents a survey on several definitions of differentiability and the relationships among them. A new definition is also introduced, and its properties and connections with the previous ones are analysed.

Keywords

Support Function Fuzzy Subset Differential Calculus Fuzzy Mapping Fuzzy Random Variable
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

1. 1.
Artstein, Z. (1974). On the calculus of closed set-valued functions, Indiana Univ. Math. J. 24, 433–441.
2. 2.
Artstein, Z. (1995). A calculus for set-valued maps and set-valued evolution equations, Set-Valued Anal. 3, 213–261.
3. 3.
Aumann, R.J. (1965). Integrals of set-valued functions, J. Math. Anal. Appl. 12, 1–12.
4. 4.
Banks, H.T. and Jacobs, M.Q. (1970). A differential calculus for multifunctions, J. Math. Anal. Appl. 29, 246–272.
5. 5.
Bridgland, T.F. (1970). Trajectory integrals of set valued functions, Pacific J. Math. 33, 43–67.
6. 6.
Bobylev, V.N. (1985a). Support function for a fuzzy set and its characteristic properties, Mat. Zametki 37, 507–513.
7. 7.
Bobylev, V.N. (1985b). Cauchy problem under fuzzy control, BUSEFAL 21, 117–126.Google Scholar
8. 8.
Buckley, J.J. and Feuring, T. (1999). Introduction to fuzzy partial differential equations. Fuzzy analysis and related topics (Prague, 1997), Fuzzy Sets and Systems105, 241–248.Google Scholar
9. 9.
Buckley, J.J. and Feuring, T. (2000). Fuzzy differential equations, Fuzzy Sets and Systems 110, 43–54.
10. 10.
De Blasi, F.S. (1976). On the differentiability of multifunctions, Pacific J. Math. 66, 67–81.
11. 11.
De Blasi, F.S. and Myjak, J. (1986). Weak convergence of convex sets in Banach spaces, Arch. Math. (Basel) 47, 448–456.
12. 12.
Debreu, G. (1967). Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, pp. 351–372. Univ. California Press, Berkeley, Calif.Google Scholar
13. 13.
Diamond, P. and Kloeden, P. (1994). Metric Spaces of Fuzzy Sets. Theory and applications, World Scientific Publishing Co., Inc., River Edge, NJ.Google Scholar
14. 14.
Dubois, D. and Prade, H. (1982). Towards fuzzy differential calculus. Part 3: Differentiation, Fuzzy Sets and Systems 8, 225–233.
15. 15.
Dubois, D. and Prade, H. (1987). On several definitions of the differential of a fuzzy mapping, Fuzzy Sets and Systems 24, 117–120.
16. 16.
Goetschel, R. and Voxman, W. (1986). Elementary fuzzy calculus Fuzzy Sets and Systems 18 31–43. Google Scholar
17. 17.
Hörmander, L. (1955). Sur la fonction d’appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3, 181–186.
18. 18.
Hukuhara, M. (1967). Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac. 10, 205–223.
19. 19.
Kaleva, O. (1987). Fuzzy differential equations, Fuzzy Sets and Systems 24, 301–317.Google Scholar
20. 20.
Kandel, A., Friedman, M. and Ming, M. (1996). On fuzzy dynamical processes Proc. FUZZ-IEEE’96 1813–1818.Google Scholar
21. 21.
Klement, E.P., Puri, M.L. and Ralescu, D.A. (1986). Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407, 171–182.Google Scholar
22. 22.
Kudö, H. (1954). Dependent experiments and sufficient statistics, Nat. Sci. Rep. Ochanomizu Univ. 4, 151–163.Google Scholar
23. 23.
Lowen, R. (1980). Convex fuzzy sets, Fuzzy Sets and Systems 3, 291–310.Google Scholar
24. 24.
Negoita, C.V. and Ralescu, D.A. (1975). Applications of fuzzy sets to system analysis, John Wiley & Sons, New York.Google Scholar
25. 25.
Nguyen, H.T. (1978). A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64, 369–380.Google Scholar
26. 26.
Puri, M.L. and Ralescu, D.A. (1983). Differentials of fuzzy functions, J. Math. Anal. Appl. 91, 552–558.Google Scholar
27. 27.
Puri, M.L. and Ralescu, D.A. (1985). The concept of normality for fuzzy random variables, Ann. Probab. 13, 1373–1379.
28. 28.
Puri, M.L. and Ralescu, D.A. (1986). Fuzzy random variables, J. Math. Anal. Appl. 114, 409–422.Google Scholar
29. 29.
Râdström, H. (1952). An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3, 165–169.Google Scholar
30. 30.
Rojas-Medar, M., Bassanezi, R.C. and Roman-Flores, H. (1999). A generalization of the Minkowski embedding theorem and applications, Fuzzy Sets and Systems 102, 263–269.
31. 31.
Rodriguez-Muniz, L.J., López-Díaz, M., Gil, M.A. and Ralescu, D.A. (2001). The s-diferentiability of fuzzy mappings (submitted for publication).Google Scholar
32. 32.
Seikkala, S. (1987). On the fuzzy initial value problem, Fuzzy Sets and Systems 24, 319–330.Google Scholar
33. 33.