Several notions of differentiability for fuzzy set-valued mappings

  • Luis J. Rodríguez-Muñiz
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 87)


This paper presents a survey on several definitions of differentiability and the relationships among them. A new definition is also introduced, and its properties and connections with the previous ones are analysed.


Support Function Fuzzy Subset Differential Calculus Fuzzy Mapping Fuzzy Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artstein, Z. (1974). On the calculus of closed set-valued functions, Indiana Univ. Math. J. 24, 433–441.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Artstein, Z. (1995). A calculus for set-valued maps and set-valued evolution equations, Set-Valued Anal. 3, 213–261.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aumann, R.J. (1965). Integrals of set-valued functions, J. Math. Anal. Appl. 12, 1–12.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Banks, H.T. and Jacobs, M.Q. (1970). A differential calculus for multifunctions, J. Math. Anal. Appl. 29, 246–272.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bridgland, T.F. (1970). Trajectory integrals of set valued functions, Pacific J. Math. 33, 43–67.MathSciNetMATHGoogle Scholar
  6. 6.
    Bobylev, V.N. (1985a). Support function for a fuzzy set and its characteristic properties, Mat. Zametki 37, 507–513.MathSciNetMATHGoogle Scholar
  7. 7.
    Bobylev, V.N. (1985b). Cauchy problem under fuzzy control, BUSEFAL 21, 117–126.Google Scholar
  8. 8.
    Buckley, J.J. and Feuring, T. (1999). Introduction to fuzzy partial differential equations. Fuzzy analysis and related topics (Prague, 1997), Fuzzy Sets and Systems105, 241–248.Google Scholar
  9. 9.
    Buckley, J.J. and Feuring, T. (2000). Fuzzy differential equations, Fuzzy Sets and Systems 110, 43–54.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    De Blasi, F.S. (1976). On the differentiability of multifunctions, Pacific J. Math. 66, 67–81.MathSciNetMATHGoogle Scholar
  11. 11.
    De Blasi, F.S. and Myjak, J. (1986). Weak convergence of convex sets in Banach spaces, Arch. Math. (Basel) 47, 448–456.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Debreu, G. (1967). Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, pp. 351–372. Univ. California Press, Berkeley, Calif.Google Scholar
  13. 13.
    Diamond, P. and Kloeden, P. (1994). Metric Spaces of Fuzzy Sets. Theory and applications, World Scientific Publishing Co., Inc., River Edge, NJ.Google Scholar
  14. 14.
    Dubois, D. and Prade, H. (1982). Towards fuzzy differential calculus. Part 3: Differentiation, Fuzzy Sets and Systems 8, 225–233.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dubois, D. and Prade, H. (1987). On several definitions of the differential of a fuzzy mapping, Fuzzy Sets and Systems 24, 117–120.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Goetschel, R. and Voxman, W. (1986). Elementary fuzzy calculus Fuzzy Sets and Systems 18 31–43. Google Scholar
  17. 17.
    Hörmander, L. (1955). Sur la fonction d’appui des ensembles convexes dans un espace localement convexe, Ark. Mat. 3, 181–186.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hukuhara, M. (1967). Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac. 10, 205–223.MathSciNetMATHGoogle Scholar
  19. 19.
    Kaleva, O. (1987). Fuzzy differential equations, Fuzzy Sets and Systems 24, 301–317.Google Scholar
  20. 20.
    Kandel, A., Friedman, M. and Ming, M. (1996). On fuzzy dynamical processes Proc. FUZZ-IEEE’96 1813–1818.Google Scholar
  21. 21.
    Klement, E.P., Puri, M.L. and Ralescu, D.A. (1986). Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407, 171–182.Google Scholar
  22. 22.
    Kudö, H. (1954). Dependent experiments and sufficient statistics, Nat. Sci. Rep. Ochanomizu Univ. 4, 151–163.Google Scholar
  23. 23.
    Lowen, R. (1980). Convex fuzzy sets, Fuzzy Sets and Systems 3, 291–310.Google Scholar
  24. 24.
    Negoita, C.V. and Ralescu, D.A. (1975). Applications of fuzzy sets to system analysis, John Wiley & Sons, New York.Google Scholar
  25. 25.
    Nguyen, H.T. (1978). A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64, 369–380.Google Scholar
  26. 26.
    Puri, M.L. and Ralescu, D.A. (1983). Differentials of fuzzy functions, J. Math. Anal. Appl. 91, 552–558.Google Scholar
  27. 27.
    Puri, M.L. and Ralescu, D.A. (1985). The concept of normality for fuzzy random variables, Ann. Probab. 13, 1373–1379.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Puri, M.L. and Ralescu, D.A. (1986). Fuzzy random variables, J. Math. Anal. Appl. 114, 409–422.Google Scholar
  29. 29.
    Râdström, H. (1952). An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3, 165–169.Google Scholar
  30. 30.
    Rojas-Medar, M., Bassanezi, R.C. and Roman-Flores, H. (1999). A generalization of the Minkowski embedding theorem and applications, Fuzzy Sets and Systems 102, 263–269.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Rodriguez-Muniz, L.J., López-Díaz, M., Gil, M.A. and Ralescu, D.A. (2001). The s-diferentiability of fuzzy mappings (submitted for publication).Google Scholar
  32. 32.
    Seikkala, S. (1987). On the fuzzy initial value problem, Fuzzy Sets and Systems 24, 319–330.Google Scholar
  33. 33.
    Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8, 338–353.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Luis J. Rodríguez-Muñiz
    • 1
  1. 1.Departamento de Estadística e I.O. y D.M.Universidad de Oviedo, Facultad de CienciasOviedoSpain

Personalised recommendations