Remarks on Korovkin-type approximation of fuzzy random variables

  • Pedro Terán
  • Miguel López-Díaz
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 87)


In this paper we show how a technique used by R.A. Vitale to obtain a Korovkin-type approximation theorem for random sets can be exploited to develop a similar result for fuzzy random variables. A convergence theorem for positive linear operators is obtained, and consequences of this theorem in the Bernstein approximation of fuzzy random variables are analyzed.


Positive Linear Operator Fuzzy Random Variable Positive Linear Mapping Nonempty Compact Convex Subset Minkowski Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altomare, F. and Campiti, M. (1994). Korovkin-type approximation theory and its applications. de Gruyter Studies in Mathematics, 17. Walter de Gruyter and Co., Berlin.Google Scholar
  2. 2.
    Arrow, K.J. and Hahn, F.H. (1971). General Competitive Analysis. Holden-Day, San Francisco.zbMATHGoogle Scholar
  3. 3.
    Artstein, Z. and Vitale R.A. (1975). A strong law of large numbers for random compact sets, Ann. Probab. 3, 879–882.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Colubi, A., López-Díaz, M., Domínguez-Menchero, J.S. and Gil, M.A. (1999). A generalized strong law of large numbers, Probab. Th. Relat. Fields 114, 40 1417.Google Scholar
  5. 5.
    Debreu, G. (1966). Integration of correspondences, in Proc. Fifth Berkeley Symp. Math. Statist. Prob., 351–372, Univ. of California Press, Berkeley.Google Scholar
  6. 6.
    Diamond, P. and Kloeden, P.E. (1990). Metric spaces of fuzzy sets. Fuzzy Sets and Systems 35, 241–249; Corrigendum 45, (1992) 123.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Diamond, P. and Kloeden, P.E. (1994). Metric spaces of fuzzy sets. Theory and Applications. World Scientific, Singapur.zbMATHGoogle Scholar
  8. 8.
    Hiai, F. and Umegaki, H. (1977). Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7, 149–182.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Keimel, K. and Roth, W. (1992). Ordered cones and approximation. Lecture Notes in Mathematics, 1517, Springer-Verlag, Berlin.Google Scholar
  10. 10.
    Klement, E.P., Puri, M.L. and Ralescu, D.A. (1986). Limit theorems for fuzzy random variables, Proc. R. Soc, Lond. A407, 171–182.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Korovkin, P.P. (1953). On convergence of linear positive operators in the space of continuous functions (in Russian), Doklady Akad. Nauk SSSR (N.S.) 90, 961–964.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Korovkin, P. P. (1960). Linear operators and approximation theory. Hindustan Publishing Corp., Delhi 1960.Google Scholar
  13. 13.
    Matheron, G. (1975). Random Sets and Integral Geometry. J. Wiley and Sons, New York.Google Scholar
  14. 14.
    Puri, M.L. and Ralescu, D. (1981). Différentielle d’une fonction floue, C.R. Acad. Sci. Paris Sér. A 293, 237–239.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Puri, M.L. and Ralescu, D. (1986). Fuzzy random variables, J. Math. Anal. Appl. 114 409–422.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Shisha, O. and Mond, B. (1968). The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A. 60, 1196–1200.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Terân, P. and López-Díaz, M. (2001a). On the Bernstein approximants and the y-variation of a fuzzy random variable, Inform. Sci. (accepted, in press).Google Scholar
  18. 18.
    Terân, P. and López-Díaz, M. (2001b). Approximation of mappings with values which are upper semicontinuous functions (submitted for publication).Google Scholar
  19. 19.
    Vitale, R.A. (1979). Approximation of convex set-valued functions, J. Approx. Theory 26 301–316.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Vitale, R.A. (1983). Some developments in the theory of random sets, Bull. Int. Statist. Inst. 50, 863–871.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Pedro Terán
    • 1
  • Miguel López-Díaz
    • 1
  1. 1.Departamento de Estadística e I.O. y D.M.Universidad de Oviedo Facultad de CienciasOviedoSpain

Personalised recommendations