f-inequality indices for fuzzy random variables

  • María Asunción Lubiano
  • María Ángeles Gil
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 87)


This paper presents a generalized family of real-valued inequality indices associated with fuzzy-valued random elements. This family is first defined and later several general and particular desirable properties of the indices are examined. The unbiased estimation of an index of the above family is stated. Examples are considered to illustrate the studies developed in this paper.


Fuzzy Number Ranking Function Fuzzy Subset Finite Population Inequality Measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamo, J.M. (1980) Fuzzy decision trees. Fuzzy Sets and Systems 4, 207–219.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alonso, M.C., Bertoluzza, C., Brezmes, T. and Lubiano, M.A. (2001) A generalized real-valued measure of the inequality associated with a fuzzy random variable. Int. J. Approx. Reas. (accepted, in press).Google Scholar
  3. 3.
    Blackorby, C. and Donaldson, D. (1978). Measures of relative equality and their meaning in terms of social welfare. J. Econom. Theory 18, 59–80.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bortolan, G. and Degani, P. (1985). A review of some methods for ranking fuzzy subsets. Fuzzy Sets and Systems 15, 1–19.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bourguignon, F. (1979). Decomposable income inequality measures. Econometrica 47, 901–920.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Campos, L.M. de and Gonzalez, A. (1989). A subjective approach for ranking fuzzy numbers. Fuzzy Sets and Systems 29, 145–153.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Colubi, A. (1997). Los f -Indices de desigualdad difusos asociados a una variable aleatoria difusa. Trabajo de Investigación de Tercer ciclo. Universidad de Oviedo.Google Scholar
  8. 8.
    Colubi, A., Gil, M.A. and López-Garcia, H. (1997). Measuring the inequality associated with a fuzzy random variable in terms of statistical f-divergences. Proc. EUFIT’97 3, 1764–1768.Google Scholar
  9. 9.
    Cowell, F.A. (1980). On the structure of additive inequality measures. Rev. Econ. Stud. 47, 521–531.MATHCrossRefGoogle Scholar
  10. 10.
    Cowell, F.A. and Kuga, K. (1981). Additivity and the entropy concept. An axiomatic approach. J. Econom. Theory 25, 131–143.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cox, E. (1994). The Fuzzy Systems Handbook. Academic Press, Cambridge.MATHGoogle Scholar
  12. 12.
    Csiszar, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Scient. Math. Hung. 2, 299–318.MathSciNetMATHGoogle Scholar
  13. 13.
    Delgado, M., Verdegay, J.L. and Vila, M.A. (1988). A procedure for ranking fuzzy numbers using fuzzy relations. Fuzzy Sets and Systems 26, 49–62.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Diamond, P. and Kloeden, P. (1994). Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore.MATHGoogle Scholar
  15. 15.
    Dubois, D. and Prade, H. (1980). Fuzzy Sets and Systems: Theory and applications. Academic Press, New York.MATHGoogle Scholar
  16. 16.
    Eichhorn, W. and Gehrig, W. (1982). Measurement of inequality in Economics. In Applied Mathematics-Optimization and Operations Research ( B. Korte, Eds.), 657–693. North-Holland, Amsterdam.Google Scholar
  17. 17.
    Gil, M.A. and Gil, P. (1989). On some information measures of degree ß = 2. Estimation in simple-stage cluster sampling. Statist. Probab. Lett. 8, 157–162.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gil, M.A., Caso, C. and Gil, P. (1989a). Estudio asintótico de una daze de indices de desigualdad muestrales. Trab. de Est. 4, 95–109.MATHCrossRefGoogle Scholar
  19. 19.
    Gil, M.A., Pérez, R. and Gil, P. (1989b). A family of measures of uncertainty involving utilies: definitions, properties, applications and statistical inferences. Metrika 36, 129–147.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gonzalez, A. and Vila, M.A. (1992). Dominance relations on fuzzy numbers. Inform. Sci. 64, 1–16. Google Scholar
  21. 21.
    Klir, G.J. and Yuan, B. (1995). Fuzzy sets and Fuzzy Logic. Theory and Applications. Prentice Hall, New Jersey.Google Scholar
  22. 22.
    Kölm, S. Ch. (1976). Unequal inequalities I. J. Econom. Theory 12, 416–442.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kölm, S. Ch. (1976). Unequal inequalities II. J. Econom. Theory 13, 82–111.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kolodziejczyk, W. (1986). Orlovsky’s concept of Decision-Making with fuzzy preference relation-further results. Fuzzy Sets and Systems 19, 11–20.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lopez Díaz, M. (1996). Medibilidad e integración de variables aleatorias difusas. Aplicación a problemas de decision. PhD Thesis. Universidad de Oviedo.Google Scholar
  26. 26.
    López-Díaz, M. and Gil, M.A. (1998). The A-average value and the fuzzy expectation of a fuzzy random variable. Fuzzy Sets and Systems 99, 347–352.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Lubiano, M.A. (1999). Medidas de variación para elementos aleatorios imprecisos. PhD Thesis. Universidad de Oviedo.Google Scholar
  28. 28.
    Martínez López, I. (1991). Aproximación de algunas familias de Indices de variación en poblaciones finitas. PhD. Thesis. Universidad de Oviedo.Google Scholar
  29. 29.
    Nakamura, K. (1986). Preference relations on a set of fuzzy utilities as a basis for decision making Fuzzy Sets and Systems 20, 147–162.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Norwich, A.M. and Turksen, I.B. (1984). A model for the measurement of membership and the consequences of its empirical implementation. Fuzzy Sets and Systems 12, 1–25.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Nguyen, H.T. (1978). A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380.Google Scholar
  32. 32.
    Puri, M.L. and Ralescu, D. (1981). Différentielle d’une fonction floue. C.R. Acad. Sci. Paris Sér. I 293, 237–239.Google Scholar
  33. 33.
    Puri, M.L. and Ralescu, D. (1983). Differentials of fuzzy functions. J. Math. Annal. Appl. 91, 552–558.Google Scholar
  34. 34.
    Puri, M.L. and Ralescu, D. (1986). Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422.Google Scholar
  35. 35.
    Ramík, J. and Rímanek, J. (1985). Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets and Systems 16, 123–138.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Sanchez de Posada Martínez, C. (1998). Estudio matemcítico de los ntimeros difusos. Trabajo Integrado y Académicamente Dirigido del Plan de Estudios de la Licenciatura de Matematicas. Universidad de Oviedo.Google Scholar
  37. 37.
    Shorrocks, A.F. (1980). The class of additively decomposable inequality measures. Econometrica 48, 613–625.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Tseng, T.V. and Klein, C.M. (1989). New algorithm for the ranking procedure in fuzzy decision-making IEEE Trans. Syst. Man and Cybernet. 19, 1289–1296.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yager, R.R. (1981) A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24, 143–161.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Inform. Sci., Part 1 8, 199–249; Part 2 8, 301–353; Part 3 9, 43–80.MathSciNetGoogle Scholar
  41. 41.
    Zagier, D. (1983). On the decomposability of the Gini coefficient and other indices of inequality. Discussion paper No. 108, University of Bonn.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • María Asunción Lubiano
    • 1
  • María Ángeles Gil
    • 1
  1. 1.Departamento de Estadística e I.O. y D.M.Universidad de OviedoOviedoSpain

Personalised recommendations