On the variance of random fuzzy variables

  • Ralf Körner
  • Wolfgang Näther
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 87)


In this paper a generalized definition of the variance of a random fuzzy variable is introduced on the basis of a suitable generalized metric defined on the wide class of the variable values.


Fuzzy Number Central Limit Theorem Random Fuzzy Variable Gaussian Random Element Symmetric Fuzzy Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araujo, A., Giné, E. (1980). The central limit theorem for real and Banach valued random variables. John Wiley and Sons.Google Scholar
  2. 2.
    Aumann, R.J. (1965). Integrals of set-valued functions, J. Math. Anal. Appl. 12, 1–12.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bardossy, A., Hagaman, R., Duckstein, L., Bogardi, I. (1992). Fuzzy least squares regression: Theory and application. In Fuzzy Regression Analysis ( J. Kacprzyk and M. Fedrizzi, Eds.). Physica-Verlag, Heidelberg, 183–193.Google Scholar
  4. 4.
    Bertoluzza, C., Salas A., Corral, N. (1995). On a new class of distances between fuzzy numbers, Mathware and Soft Computing 2, 71–84.MathSciNetMATHGoogle Scholar
  5. 5.
    Boswell, S.B., Taylor, M.S. (1987). A central limit theorem for fuzzy random variables, Fuzzy Sets and Systems 24, 331–344.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Casals, M.R., Gil, M.A., Gil, P. (1986). The fuzzy decision problem: an approach of testing statistical. hypotheses with fuzzy information, J. Oper. Res. 27, 371–382.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Diamond, P. (1988). Fuzzy least squares, Inform. Sci. 46, 141–157.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Diamond, P., Kloeden, P. (1990). Metric spaces of fuzzy sets, Fuzzy Sets and Systems 35, 241–249.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dunford, N., Schwartz, J.T. (1988). Linear operators. Part I. John Wiley and Sons Ltd.Google Scholar
  10. 10.
    Fréchet, M. (1948). Les éléments aléatoires de natures quelconque dans un éspace distancié, Ann. Inst. H. Poincaré 10, 215–310.Google Scholar
  11. 11.
    Gebhardt, J., Gil, M.A., Kruse, R. (1998). Fuzzy set-theoretic methods in Statistics. In Fuzzy Sets in Decision Analysis, Operations Research and Statistics Ch. 10 ( R. Slowinski, Eds.), 311–347. Kluwer Acad. Pub., Norwell.CrossRefGoogle Scholar
  12. 12.
    Hirota, K. (1981). Concepts of probabilistic sets, Fuzzy Sets and Systems 5, 31–46.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Klement, E.P., Puri, M.L., Ralescu, D.A. (1986). Limit theorems for fuzzy random variables, Proc Royal Soc. London–Series A 19, 171–182.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Körner, R. (1997a). Linear Models with Random Fuzzy Variables, PhD Thesis, Faculty of Mathematics and Computer Sciences, Freiberg University of Mining and Technology.Google Scholar
  15. 15.
    Körner, R. (1997b). On the variance of fuzzy random variables, Fuzzy Sets and Systems 92, 83–93.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Körner, R. (2000). An asymptotic a-test for the expectation of random fuzzy variables, J. Statist. Plan. Infer. 83, 331–346.MATHCrossRefGoogle Scholar
  17. 17.
    Kruse, R. (1987). On the variance of random sets, J. Math. Anal. Appl. 122, 469–473.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kruse, R., Meyer, K.D. (1987). Statistics with Vague Data. D. Reidel Publ. Comp. Dordrecht, Boston.Google Scholar
  19. 19.
    Kwakernaak, H. (1978). Fuzzy random variables - I. Definitions and theorems, Inform. Sci. 15, 1–29.Google Scholar
  20. 20.
    Lubiano, M.A., Gil, M.A., López, A.T., López-Diaz, M. (2000). The A-mean squared dispersion associated with a fuzzy random variable, Fuzzy Sets and Systems 111, 307–317MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lyashenko, N.N. (1983). Statistics of random compacts in Euclidean space, J. Sovet. Math. 21, 76–92.MATHCrossRefGoogle Scholar
  22. 22.
    Martynov, G.V. (1978). Omega-square criteria. Nauka, Moscow (in Russian).Google Scholar
  23. 23.
    Matheron, G. (1975). Random Sets and Integral Geometry. J. Wiley and Sons, New York.Google Scholar
  24. 24.
    Molchanov, I.S. (1993). Limit Theorems for Unions of Random Closed Sets. Lecture Notes in Mathematics 1561, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  25. 25.
    Näther, W. (1997). Linear statistical inference for random fuzzy data, Statistics 29, 221–240.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Näther, W. and Körner, R. (2001). Linear Regression with Random Fuzzy Observations. (In Part 4 of this volume).Google Scholar
  27. 27.
    Puri, M.L., Ralescu, D.A. (1986). Fuzzy random variables, J. Math. Anal. Appl. 114, 409–422.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Radström, H. (1952). An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3, 165–169.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Rényi, A. (1979). Probability Theory. Akadémiai Kiadó, Budapest.Google Scholar
  30. 30.
    Sazonov, V.V. (1958). A remark on characteristic functionals, Theory of Probability and Its Applications 3.Google Scholar
  31. 31.
    Stoyan, D., Stoyan, H. (1994). Fractals, Random Shapes and Point Fields. J. Wiley and Sons, Chichester.Google Scholar
  32. 32.
    Vakhania, N.N. (1981). Probability Distribution on Linear Spaces. Elsevier Science Publishers B.V., North Holland.Google Scholar
  33. 33.
    Viertl, R. (1996). Statistical Methods for Non-Precise Data. CRC Press, Boca Raton, New York, London, Tokyo.Google Scholar
  34. 34.
    Watanabe, N., Imaizumi, T. (1993). A fuzzy statistical test of fuzzy hypothesis, Fuzzy Sets and Systems 53, 167–178.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Weil, W. (1982). An application of the central limit theorem for Banach-spacevalued random variables to the theory of random sets, Z. Wahrscheinlichkeitsth. verw. Geb. 14, 582–599.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ralf Körner
    • 1
  • Wolfgang Näther
    • 1
  1. 1.Faculty of Mathematics and Computer SciencesFreiberg University of Mining and TechnologyFreibergGermany

Personalised recommendations