Linear regression with random fuzzy observations

  • Wolfgang Näther
  • Ralf Körner
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 87)


In this paper, on the basis of the concept of fuzzy random variable a kind of (though not strict) linear estimation theory is developed. Modified linear estimators are presented and discussed, and the least squares approximation principle is used for constructing estimators.


Fuzzy Number Random Fuzzy Variable Fuzzy Data Fuzzy Linear Regression Best Linear Unbiased Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandemer, H. (1985). Evaluating explicit functional relationships from fuzzy observations, Fuzzy Sets and Systems 16, 41–52.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bandemer, H. and Näther, W. (1992). Fuzzy Data Analysis. Kluwer Academic Publishers, Dordrecht-Boston-London.MATHCrossRefGoogle Scholar
  3. 3.
    Bardossy, A. (1990). Note on fuzzy regression, Fuzzy Sets and Systems 37, 65–75.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bardossy, A., Hagaman, R., Duckstein, L., Bogardi, I. (1992). Fuzzy least squares regression: Theory and application. In Fuzzy Regression Analysis ( J. Kacprzyk and M. Fedrizzi, Eds.). Physica-Verlag, Heidelberg, 183–193.Google Scholar
  5. 5.
    Celmins, A. (1987). Least squares model fitting to fuzzy vector data, Fuzzy Sets and Systems 22, 245–269.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chang, P.T. and Lee, E.S. (1994). Fuzzy linear regression with spreads unrestricted in sign, Computers Math. Applic. 28, 61–70.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Diamond, P. (1987). Least squares fitting of several fuzzy variables. Proc. 2nd IFSA Congress, Tokyo.Google Scholar
  8. 8.
    Diamond, P. (1988). Fuzzy least squares, Inform. Sci. 46, 141–157.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Diamond, P. (1992). Least squares and maximum likelihood regression for fuzzy linear models. In Fuzzy Regression Analysis ( J. Kacprzyk and M. Fedrizzi, Eds.). Physica-Verlag, Heidelberg, 137–151.Google Scholar
  10. 10.
    Diamond, P. and Kloeden, P. (1994). Metric Space of Fuzzy Sets. World Scientific, New Jersey.Google Scholar
  11. 11.
    Hukuhara, M. (1967). Integration des applications mesurables dont la valeur est un compact convexe, Funkc. Ekvacioj. 205–223.Google Scholar
  12. 12.
    Kacprzyk, J. and Fedrizzi, M. (1992). Fuzzy Regression Analysis. Omnitech Press, Warsaw, and Physica-Verlag, Heidelberg.MATHGoogle Scholar
  13. 13.
    Körner, R. (1997a). Linear Models with Random Fuzzy Variables. PhD thesis, Faculty of Mathematics and Computer Sciences, Freiberg University of Mining and Technology.Google Scholar
  14. 14.
    Körner, R. (1997b). On the variance of fuzzy random variables, Fuzzy Sets and Systems 92, 83–93.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Körner, R. (2000). An asymptotic a-test for the expectation of random fuzzy variables, J. Statist. Plan. Infer. 83, 331–346.MATHCrossRefGoogle Scholar
  16. 16.
    Körner, R. and Näther, W. (1998). Linear regression with random fuzzy variables: extended classical estimates, best linear estimates, least squares estimates, Inform. Sci. 109, 95–118.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Körner, R. and Näther, W. (2001). On the Variance of Random Fuzzy Variables. (In Part 2 in this volume).Google Scholar
  18. 18.
    Luenberger, K. (1968). Optimization by Vector Space Methods. J. Wiley & Sons, New York-London-Sydney-Toronto.Google Scholar
  19. 19.
    Mendenhall, W. (1983). Introduction to Probability and Statistics. 6th Edition. Duxbury Press, Boston.Google Scholar
  20. 20.
    Näther, W. (1997). Linear statistical inference for random fuzzy data, Statistics 29, 221–240.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Rockafellar, R.T. (1970). Convex Analysis. Princeton Univ. Press, Princeton-New Jersey.MATHGoogle Scholar
  22. 22.
    Sakawa, M. and Yano, M: (1992). Fuzzy linear regression and its applications. In Fuzzy Regression Analysis ( J. Kacprzyk and M. Fedrizzi, Eds) Omnitech Press, Warsaw, and Physica-Verlag, Heidelberg, 61–80.Google Scholar
  23. 23.
    Tanaka, H., Uejima, S. and Asai, K. (1980). Fuzzy linear regression model, IEEE Trans. Syst. Man Cybern. 10, 2933–2938.Google Scholar
  24. 24.
    Tanaka, H. (1987). Fuzzy data analysis by possibilistic linear models, Fuzzy Sets and Systems 24, 363–375.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Tanaka, H. and Watada, J. (1988). Possibilistic linear systems and their application to the linear regression model, Fuzzy Sets and Systems 27, 275–289.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Wolfgang Näther
    • 1
  • Ralf Körner
    • 1
  1. 1.Faculty of Mathematics and Computer SciencesFreiberg University of Mining and TechnologyFreibergGermany

Personalised recommendations