Statistics with one-dimensional fuzzy data

  • Reinhard Viertl
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 87)


In this paper a theory to model main elements in statistical problems concerning fuzzy data is presented.


Fuzzy Number Fuzzy Subset Combination Rule Fuzzy Data Observation Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandemer, H. (Ed.) (1993). Modelling Uncertain Data. Akademie Verlag, Berlin.Google Scholar
  2. 2.
    Dubois, D. and Prade, H. (1986). Fuzzy sets and statistical data. European Journal of Operational Research 25, 345–356.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Dutter, R. and Viertl, R. (1998). Computation of Confidence Regions Based on Non-Precise Data. COMPSTAT Proc. in Comput. Statist., Short Communications, IACR-Rothamsted.Google Scholar
  4. 4.
    Frühwirth-Schnatter, S. (1993). On fuzzy Bayesian inference. Fuzzy Sets and Systems 60, 41–58.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Gil, M.A., Corral, N. and Gil, P. (1988). The minimum inaccuracy estimates in x2 tests for goodness of fit with fuzzy observations. Journal of Statistical Planning and Inference 19, 95–115.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kacprzyk, J. and Fedrizzi, M. (Eds.) (1988). Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making. Lecture Notes in Economics and Mathematical Systems, Vol. 310, Springer-Verlag, Berlin.MATHGoogle Scholar
  7. 7.
    Kalman, R.E. (1982). Identification from real data. In Current Developments in the Interface: Economics, Econometrics, Mathematics, ( M. Hazewinkel and A.H.G. Rinnoy Kan, Eds.). D. Reidel Publ., Dordrecht, 161–196.CrossRefGoogle Scholar
  8. 8.
    Kruse, R. and Meyer, K.D. (1987). Statistics with Vague Data, D. Reidel Publ., Dordrecht.MATHCrossRefGoogle Scholar
  9. 9.
    Lehmann, E.L. (1986). Testing Statistical Hypotheses,2nd ed., John Wiley and Sons, New York.MATHGoogle Scholar
  10. 10.
    Niculescu, S.P. and Viertl, R. (1992). A comparison between two fuzzy estimators for the mean. Fuzzy Sets and Systems 48, 341–350.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Römer, C. and Kandel, A. (1995). Statistical tests for fuzzy data. Fuzzy Sets and Systems 72, 1–26.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    R. Viertl (Ed.) (1987). Probability and Bayesian Statistics. Plenum Press, New York.MATHGoogle Scholar
  13. 13.
    Viertl, R. (1996). Statistical Methods for Non-Precise Data. CRC Press, Boca Raton, Florida.Google Scholar
  14. 14.
    Viertl, R. (1999). On Fuzzy Predictive Densities, Tatra Mt. Math. Publ. (Fuzzy Sets, Part II) 16, 379–382.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Reinhard Viertl
    • 1
  1. 1.Institut für StatistikTechnische Uniersität WienAustria

Personalised recommendations